Glaciers Reading Group.

Glaciers Reading Group Wiki Page

This is a wiki page to share information and documents about the Spring 2016 glaciers reading group.

Meeting time/place:

Tuesdays, 4 pm, Map Room.

Suggested paper list:

Glacier ocean interaction

Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., Neel, S. O., Bartholomaus, T. C., … Moore, J. C. (2014). Termini of calving glaciers as self-organized critical systems. Nature Geoscience, 7(December), 874–878. http://doi.org/10.1038/NGEO2290

Evans, W., Mathis, J. T., & Cross, J. N. (2014). Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences, 11(2), 365–379. http://doi.org/10.5194/bg-11-365-2014

Fried, M. J., Catania, G. A., Bartholomaus, T. C., Duncan, D., Davis, M., Stearns, L. A., … Sutherland, D. (2015). Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophysical Research Letters, n/a–n/a. http://doi.org/10.1002/2015GL065806

Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., & Boje, J. (2014). Oceanic Boundary Conditions for Jakobshavn Glacier: Part I. Variability and Renewal of Ilulissat Icefjord Waters, 2001-2014. Journal of Physical Oceanography, 141107130817004. http://doi.org/10.1175/JPO-D-14-0044.1

Howat, I. M., Joughin, I., Fahnestock, M. A., Smith, B. E., & Scambos, T. A. (2008). Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646–660. http://doi.org/10.3189/002214308786570908

Jenkins, A. (2011). Convection-Driven Melting near the Grounding Lines of Ice Shelves and Tidewater Glaciers. Journal of Physical Oceanography, 41(12), 2279–2294. http://doi.org/10.1175/JPO-D-11-03.1

O’Neel, S., Hood, E., Bidlack, a. L., Fleming, S. W., Arimitsu, M. L., Arendt, a., … Pyare, S. (2015). Icefield-to-Ocean Linkages across the Northern Pacific Coastal Temperate Rainforest Ecosystem. BioScience, XX(X), 1–14. http://doi.org/10.1093/biosci/biv027

Motyka, R. J., Hunter, L., Echelmeyer, K. A., & Connor, C. L. (2003). Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36(1), 57–65. http://doi.org/10.3189/172756403781816374

Motyka, R. J., Dryer, W. P., Amundson, J., Truffer, M., & Fahnestock, M. (2013). Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophysical Research Letters, 40(19), 5153–5158. http://doi.org/10.1002/grl.51011

Murray, T., Scharrer, K., James, T. D., Dye, S. R., Hanna, E., Booth, A. D., … Huybrechts, P. (2010). Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), F03026. http://doi.org/10.1029/2009JF001522

Peters, I., Amundson, J. M., Cassotto, R., Fahnestock, M., Darnell, K., Truffer, M., & Zhang, W. (2015). Dynamic jamming of iceberg-choked fjords. Geophys. Res. Lett., 42, 1122–1129. http://doi.org/10.1002/2014GL062715

Straneo, F., & Cenedese, C. (2015). The Dynamics of Greenland’s Glacial Fjords and Their Role in Climate. Annual Review of Marine Science, 7(August 2014), 89–112. http://doi.org/10.1146/annurev-marine-010213-135133

Xu, Y., Rignot, E., Menemenlis, D., & Koppes, M. (2012). Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Annals of Glaciology, 53(60), 229–234. http://doi.org/10.3189/2012AoG60A139

Firn hydrology

Pfeffer, W., Meier, M. & Illangasekare, T. H. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res. 96, 22117–22124 (1991).

Forster, R. R. et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geosci. 7, 95–98 (2013).

Koenig, L. S., Miège, C., Forster, R. R. & Brucker, L. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophys. Res. Lett. 41, 81–85 (2014).

Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J. & Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240–243 (2012).

Machguth et al. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change

Modeling:
Kuipers Munneke et al., 2014. Explaining the presence of perennial liquid water bodies in the firn of the Greenland Ice Sheet. GRL

vanAngelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., Fettweis, X. & van Meijgaard, E. Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophys. Res. Lett. 40, 2109–2113 (2013).

Subglacial:
Lindbäck, K. et al. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42, 7606–7614 (2015).

Schedule:

1.21.16:
No paper, just introductory material.

1.26.16:
presenter: A. Roth
paper: O'Neel et al. (2015)

2.2.16:
presenter: J. Zimmermann
paper: Fried et al. (2015)

2.2.16:
presenter: C. Kienholz
paper: Motyka et al. (2013)

2.9.16:
presenter: J. Zechmann
paper: Jenkins (2011)

2/23/16:
presenter: D. Brinkerhoff
paper: Xu et al. (2012)

3/1/16:
presenter: M. Debolskiy
paper: Cenedese and Gatto (2016)

3/816:
presenter:
paper:

3/22/16:
presenter:
paper:

3/29/16:
presenter:
paper:

4/5/16:
presenter:
paper:

4/12/16:
presenter:
paper:

4/19/16:
presenter:
paper:

4/26/16:
presenter:
paper: