On Notation

- (hopefully) consistent with Continuum Mechanics (Truffer)
- with lots of input from *Luethi & Funk: Physics of Glaciers I* lecture at ETH
- notation following Greve & Blatter: *Dynamics of Ice Sheets and Ice Sheets*
Types of Glaciers

cold glacier
Ice below pressure melting point, no liquid water.

temperate glacier
Ice at pressure melting point, contains liquid water in the ice matrix.

polythermal glacier
Cold and temperate parts.

Why we care

The knowledge of the distribution of temperature in glaciers and ice sheets is of high practical interest:

- A temperature profile from a cold glacier contains information on past climate conditions.
- Ice deformation is strongly dependent on temperature (temperature dependence of the rate factor A in Glen’s flow law);
- The routing of meltwater through a glacier is affected by ice temperature. Cold ice is essentially impermeable, except for discrete cracks and channels.
- If the temperature at the ice-bed contact is at the pressure melting temperature the glacier can slide over the base.
- Wave velocities of radio and seismic signals are temperature dependent. This affects the interpretation of ice depth soundings.
Energy balance: depicted

Energy balance: equation

\[\rho \left(\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u \right) = -\nabla \cdot \mathbf{q} + Q \]

- \(\rho \) ice density
- \(u \) internal energy
- \(v \) velocity
- \(q \) heat flux
- \(Q \) dissipation power (strain heating)

Noteworthy

- strictly speaking, internal energy is not a conserved quantity
- only the sum of internal energy and kinetic energy is a conserved quantity
Temperature equation

- ice is cold if a change in heat content leads to a change in temperature alone
- independent variable: temperature $T = c(T)^{-1}u$

$$\rho c(T) \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = -\nabla \cdot \mathbf{q} + Q$$

Fourier-type sensible heat flux

$$q = q_s = -k(T)\nabla T$$

- $c(T)$: heat capacity
- $k(T)$: thermal conductivity

Thermal properties

Heat capacity is a monotonically-increasing function of temperature.

Thermal conductivity is a monotonically-decreasing function of temperature.
Viscosity η is a function of effective strain rate d_e and temperature T

$$\eta = \eta(T, d_e) = \frac{1}{2} B(T) d_e^{(1-n)/n}$$

where $B = A(T)^{-1/n}$ depends exponentially on T

Ice temperatures close to the glacier surface

Assumptions

- only the top-most 15 m experience seasonal changes
- heat diffusion is dominant

We then get

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial h^2}$$

where h is depth below the surface, and $\kappa = k/(\rho c)$ is the thermal diffusivity of ice
Ice temperatures close to the glacier surface

Boundary Conditions

\[T(0, t) = T_0 + \Delta T_0 \cdot \sin(\omega t), \]
\[T(\infty, t) = T_0. \]

- \(T_0 \): mean surface temperature
- \(\Delta T_0 \): amplitude
- \(2\pi/\omega \): frequency
Ice temperatures close to the glacier surface

Analytical Solution

\[T(h, t) = T_0 + \Delta T_0 \exp \left(-h \sqrt{\frac{\omega}{2\kappa}} \right) \sin \left(\omega t - h \sqrt{\frac{\omega}{2\kappa}} \phi(h) \right) \]

\(\Delta T(h) \) amplitude variation with depth

Ice temperatures close to ice divides

Assumptions

\(\text{only vertical advection and diffusion} \)

We then get

\[\kappa \frac{\partial^2 T}{\partial z^2} = w(z) \frac{\partial T}{\partial z} \]

where \(w \) is the vertical velocity

Analytical solution

\(\text{can be obtained} \)
Dry Valleys, Antarctica
(very) high altitudes at lower latitudes

Water content equation

Ice is temperate if a change in heat content leads to a change in water content alone

Independent variable: water content (aka moisture content, liquid water fraction) \(\omega = L^{-1} u \)

\[
\rho L \left(\frac{\partial \omega}{\partial t} + \mathbf{v} \cdot \nabla \omega \right) = -\nabla \cdot \mathbf{q} + Q
\]

⇒ in temperate ice, water content plays the role of temperature
Flow Law

Viscosity η is a function of effective strain rate d_e and water content ω

$$\eta = \eta(\omega, d_e) = \frac{1}{2}B(\omega)d_e^{(1-n)/n}$$

where B depends linearly on ω

- but only very few studies (e.g. from Lliboutry and Duval)

Latent heat flux

$$q = q_l = \begin{cases} \text{Fick-type} \\ \text{Darcy-type} \end{cases}$$

⇒ leads to different mixture theories (*Class I, Class II, Class III*)

Sources for liquid water in temperate Ice

1. water trapped in the ice as water-filled pores
2. water entering the glacier through cracks and crevasses at the ice surface in the ablation area
3. changes in the pressure melting point due to changes in lithostatic pressure
4. melting due energy dissipation by internal friction (strain heating)
Temperature and water content of temperate ice

Temperature

\[T_m = T_{tp} - \gamma (p - p_{tp}) \]

- \(T_{tp} = 273.16 \text{K} \) triple point temperature of water
- \(p_{tp} = 611.73 \text{Pa} \) triple point pressure of water
- Temperature follows the pressure field

Water content

- generally between 0 and 3%
- water contents up to 9% found

Temperate Glaciers

Temperate glaciers are widespread, e.g.:
- Alps, Andes, Alaska,
- Rocky Mountains, tropical glaciers, Himalaya
Polythermal glaciers

- contains both cold and temperate ice
- separated by the cold-temperate transition surface (CTS)
- CTS is an internal free surface of discontinuity where phase changes may occur
- polythermal glaciers, but not polythermal ice

Scandinavian-type thermal structure

- Scandinavia
- Svalbard
- Rocky Mountains
- Alaska
- Antarctic Peninsula
Scandinavian-type thermal structure

Why is the surface layer in the ablation area cold? Isn’t this counter-intuitive?

Canadian-type thermal structure

- high Arctic latitudes in Canada
- Alaska
- both ice sheets Greenland and Antarctica
Thermodynamics in ice sheet models

- only few glaciers are completely cold
- most ice sheet models are so-called *cold-ice method* models
- so far two polythermal ice sheet models

\[
\rho c(T) \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = \nabla \cdot k \nabla T + Q
\]
\[
\rho L \left(\frac{\partial \omega}{\partial t} + \mathbf{v} \cdot \nabla \omega \right) = Q
\]

or

\[
\rho \left(\frac{\partial E}{\partial t} + \mathbf{v} \cdot \nabla E \right) = \nabla \cdot \nu \nabla E + Q
\]

Cold vs Polythermal for Greenland

- thinner temperate layer
- but difference in total ice volume for steady-state run is $< 1\%$ (Greve, 1995)
- **SO WHAT?**
- better conservation of energy
- temperate basal ice means ice is sliding at the base
- new areas may become temperate
Thermodynamics in ice sheet models

cold-ice method

polythermal

cold - polythermal

- ice upper surface elevation (masl) from 10km non-sliding SIA equilibrium run

3.295 × 10^6 kg

3.025 × 10^6 kg

0.270 × 10^6 kg (≈ 8%)