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Introduction 
 

Monitoring the mass balance of glaciers should be one of the easiest tasks for glaciologists in the 
21st century.  The exercise is described simply: Either one measures the mass entering the glacier 
through snowfall, and the mass leaving it through surface melt, sublimation, and ice discharge, or 
one measures the growth or shrinkage of the ice body itself over time.  Satellite measurements, ice 
cores, and meterological models, combined with ice-penetrating radar measurements of ice 
thickness, contribute data to all of these terms.  Yet putting all of the terms together to form an 
accurate estimate of the mass balance of the Greenland and Antarctic ice sheets has proven 
complicated.  The immense spatial scales involved, the logistical difficulties in field campaigns, 
together with the large uncertainties in meterological estimates and the temporal variability in all 
the contributions to the mass balance, have lead to uncertainty in mass-balance estimates for the 
two ice sheets that probably exceed a factor of two (figure 1). 

There are three important numbers to keep in mind when assessing mass-balance estimates for 
the ice sheets.  The first is the scaling between ice sheet mass balance and sea-level rise: adding 
360 Gigatons of water to the ocean leads to a one-millimeter rise in global sea level.  The second 
and third are the annual mass turnovers of Antarctica and Greenland:  Antarctica receives around 
2000 GT/yr of accumulation (Rignot and others, 2008) while Greenland receives around 750 GT 



of total precipitation, a substantial majority 

o
f it as snow (Ettema and others, 2009).   Current estimates of sea-level contributions of the ice 
sheets range from -140 to around -30 GT/yr for Antarctica’s ice sheets and between -220 and -
150 GT/yr for Greenland (Cazenave & Llovel, 2010).    This puts the ice sheets on the order of 
6% and 20% out of balance, respectively.  It is well worth noting that the larger estimate based 
on this range is just more than half the 1.8 mm/year current contribution of smaller glaciers to sea-
level rise (Meier and others, 2007). 

In this primer, I describe geodetic and mass-budget techniques, which are two of the three basic 
categories of techniques for measuring the mass balance of large polar glaciers and ice sheet, and 
describe the practical hurdles in implementing them.  I am leaving out gravimetric techniques, 
which Anthony Arendt will cover in his lecture. 

 
Figure 1. Ice sheet mass-balance estimates for Greenland and Antarctica.  Figure from Cazenave 
and Llovel, 2009. 



Geodetic measurements of ice sheet mass change. 
In the geodetic technique, direct measurements of the changing surface height of the glacier are 
integrated spatially, to form an estimate of the volume change.    This estimate of the volume 
change is corrected for density and for bedrock uplift or subsidence, to give an estimate of the 
rate of mass change.   

For any point on the ice sheet, the mass of the column of ice per unit area is 
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Here !  is the column-averaged density, zs and zb  are the surface and bed height respectively.  
Differentiating this with respect to time yields 

( )
bs

bs
zz

dt

d

dt

dz

dt

dz

dt

dm
!+"

#

$
%
&

'
!=

(
( . 

On the right-hand side of the equation, the terms are, respectively, the surface elevation rate, 
which is generally the measured variable, the bed elevation rate, which is usually small, and most 
commonly results from post-glacial rebound, and firn-density variability, which results from 
short-term variability in accumulation and surface density.  

The true rate of mass is often divided again, into a secular rate of elevation change, 
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is driven by long-term changes in the ice sheet, and a short-term random rate of elevation change, 
caused by annual- and sub-annual-scale random variations in the accumulation and ablation rates: 
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Here ao and bo are long-term average accumulation and ablation rates (averaged over some period 
longer than the measurement interval) and a and b are the rates during the measurement interval. 
Over long averaging intervals, we would expect a and b to average to ao and bo, but in the short 
term they appear as an error in estimates of ms.

 

All of these terms are potentially important in estimating mass balance changes, though their 
magnitudes can be considerably different from place to place.   

Measuring surface elevation changes 
Remote sensing data used for elevation change estimates comes from three main sources: Radar 
altimeters, ICESat (a laser altimeter), and photogrammetric sensors.  I address each in turn: 

Radar altimetry 

Some of the first glaciological measurements from space were made with the radar altimeters 
SEASAT in 1978, followed by GEOSAT from 1985 until 1989, followed by ERS1 in 1991 and 
ERS2 in 1995 and ENVIsat in 2002.  The most recent addition to this series of instruments is 
CRYOSAT-2, which launched in the spring of 2010.  These satellites use radar pulses, typically 



at 13 GHz, to measure the travel time from the spacecraft to the surface.   The orbits for the first 
missions were tracked by optical or radar ground stations, but more recent missions are tracked 
using GPS. 

Radar altimeters transmit and receive energy from antennas between 1 and 1.5 m in diameter, for 
wavelengths of 10-20 cm.  This produces beams on the order of 10 degrees wide.  The short 
duration of the transmitted pulse limits footprint sizes to between one and four km.  On a 
sloping ice sheet, this leads to an uncertainty in the surface height equal to the ice sheet surface 
slope times the footprint width, or up to 65 m on a surface slope of 1 degree.  Prior to 
CRYOSAT, Radar-altimetry elevation-change measurements used the ‘crossover’ technique to 
estimate surface elevation changes, in which technique at points where ascending and descending 
orbits cross.  At these points the two measurements are made with the spacecraft in the same 
position, so the slope errors cancel, and any difference between the two measurements reflects 
elevation change.  The location of the measurements is still determined by the surface slope and 
the footprint width, so significant difficulty remains in measuring elevation changes for outlet 
glaciers, where the crossovers are preferentially located on the surrounding high points. 

 

A 

further complication comes about because gigahertz-frequency radio waves can penetrate up to 
several meters into the ice sheet.  This is overcome in part by analyzing voltage-versus-time 
curves telemetered from the satellites to identify the point where the radio wave first reached the 
ground.  Deriving this estimate is known as ‘retracking’ the waveform, and different studies have 
used different algorithms to accomplish this.  These must account for the variability in firn 
properties in time, which can change the reflectance of the top surface of the firn, and perhaps 
also the intensity of subsurface backscatter.  Detailed studies of waveform shape(Arthern and 
others, 2001) indicate that the largest changes in apparent height are due to changes in the 

 
Figure 2. Left: Correction for apparent elevation change for 2000-05 as a function of returned power; scale 
runs from -10 cm/yr to +10 cm/yr (Li and Davis, 2006).  Right: Calculated 1992-2003 elevation change 
rates based on ERS1 and ERS2 altimetry color scale runs from -16 cm/yr to +16 cm/yr (Davis and others, 
2005). 



reflectance at air-snow interface, which allows the correlation between surface height differences 
and surface reflectance differences to be used to correct the surface height based on variations in 
the returned energy at the leading edge of the wave.    For ERS data from 2000-2005, this 
correction had amplitudes of 5-6 cm/yr, but of varying sign for different parts of the ice sheet, 
resulting in a continental average of around 0.2 cm/yr  (Li & Davis, 2006).  

Methods for deriving elevation time series from crossover data have evolved steadily over time.  
Early studies calculated crossovers between an early “reference” period and later measurements; 
the time-series of these differences gave the evolution of the surface height, which was often fit 
with a linear model.  These studies often simultaneously solved for a sinusoidal seasonal cycle, 
assumed to be constant from year to year.  More recently, researchers have fit auto-regressive 
models to the data (Ferguson and others, 2004), a technique which finds smoothly-varying 
functions that match the data to within tolerances appropriate to the accuracy of the data.  These 
techniques can identify both seasonal and longer-term height variations, and are claimed to be less 
prone to bias induced by seasonal cycles than linear-fitting techniques.  

Data availability 

An archive of ERS-1 and 2 radar altimetry data is available by request from the Goddard Space 
Flight Center.   The data are somewhat challenging to ingest into standard software packages, but 
online documentation is, for most purposes, adequate. 

http://icesat4.gsfc.nasa.gov/data_products/data_products.html 

ENVISat radar altimetry products are similarly available from ESA by request, for academic 
users: 

http://earth.esa.int/object/index.cfm?fobjectid=1393&step=Delivery&iName=RA2 

ICESat laser altimetry. 

A substantial potential improvement in ice-sheet geodesy came in 2003, when NASA launched 
the Ice, Cloud, and land elevation Satellite (ICESat).  ICESat was the first altimetry mission 
designed specifically for ice.  Instead of a laser, it carried GLAS, the Geophysical Laser Altimeter 
System.  GLAS fired laser pulses with a narrow beam divergence that, rather than measuring the 
maximum height of 4-km footprints, measured mean elevations for footprints between 30 and 70 
meters wide.  This largely eliminated the slope-induced errors that complicate the interpretation 
of radar-altimetry data.   The dominant error in ICESat measurements is the 10-20 m error in 
footprint geolocation, which produces vertical erros on the order of 15-30 cm on 1-degree surface 
slopes. 

 Unfortunately, the lasers on GLAS proved to have significantly shorter lifetimes than they were 
designed to.  To compensate for this, instead of operating continuously in a 183-day orbit that 
would have produced a 5 km track-to-track spacing at 70 degrees latitude, operations were 
conducted on two or three 33-day campaigns per year, giving a track-to-track spacing of around 
30 km at 70 degrees.  In addition, the large decay in laser energy, from 60-70 mJ/pulse when the 



lasers were first turned on, to less then 10 mJ per pulse late in the mission, produced negative 
biases in the recovered surface heights early in the mission that have not, to date, been adequately 
corrected for in the data.  This is known to produce a spurious positive trend in estimated surface 
heights, with a residual magnitude of around 0.05 m/a over bright, flat surfaces.  

The full 183-day orbit for ICESat would have produced crossover points separated by around 5-
6 km near the southern tip of Greenland and the northern edge of Antarctica.  These would have 
allowed good resolution of large-scale changes in the interior of the ice sheet, and moderate 
resolution in the outlet regions.  The 20-30 km between crossovers in the 33-day orbit chosen 
after the lasers began to fail precluded good resolution of elevation changes from crossover 
measurements alone.  Instead the focus shifted to “along-track” elevation-change estimates, where 
elevations from repeat tracks are compared directly.  This introduces a new problem in the data 
analysis, in that the initially-unknown surface slope can produce significant errors in the 
recovered elevation-change signal.  On average, an unknown slope of magnitude my in the 
direction perpendicular to the ground track introduces an elevation-change error of magnitude 
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!  is the RMS displacement between measured tracks and the reference tracks. 
y

!  is 
around 100 m, so on even an 0.5-degree slope, this error is on the order of a meter, although on 
surfaces that are known to be very flat, the error may be significantly smaller (e.g. (Fricker and 
others, 2007)For most reference tracks, between 6 and 18 successful repeat measurements have 
been made, which allows us to use the variation in elevation in the across-track direction to solve 
for the across-track slope.  Although other authors (Pritchard and others, 2009) have presented a 
more complicated solution for correcting surface slopes, the solution is readily obtained through a 
simple tri-linear regression for the mean surface height, the surface slope, and the rate of elevation 
change:  All surface elevations within 300 m of a given point on a ground track are collected; their 
locations in the along-track and across-track directions are denoted (x, y) , and their measurement 
times t.  We then form a so-called design matrix, G,: 
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The rate of elevation change is found: 
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The term  is the so-called “generalized inverse” of G. In a standard regression we can 
use it to estimate the error in regression parameters: 



 

Cm is a 4x4 matrix, and its diagonal elements give the square of the errors in the regression 
parameters. Cd is square matrix with one row and one column for each data point.  The diagonal 
of this matrix gives the square of the data errors, the off-diagonal elements show how strongly the 
elements are correlated with on another.  Unfortunately, this formula fails to capture the coupling 
between random variations in surface elevation, generated, for instance, by snowfall, and errors in 
the surface slope, which in turn propagates back into errors in the elevation rate.  After some 
consideration, I have found that the most satisfactory procedure for estimating errors in the 
elevation rate is to use the RMS residual as the measurement error in the data covariance matrix, 
and multiply the recovered elevation-change error by a factor that depends on the number of 

distinct measurement campaigns and the ratio between the RMS regression misfit and the 
measurement errors.  Figure 3 shows this factor,  F(N, R/σ) as derived from a set of random 
realizations of random surface-elevation time series and measurement errors.  F is close to 1 for 
R/σ=1, but varies strongly with N for R/σ>>1. 

 

A similar procedure gives time-series of elevation changes.  In this case,  
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Figure 3. Correction factors for errors in mean 
elevation rates (left) and incremental elevation rates (right) as a function of the number of 
measurements used (colors, legend at top) and of the ratio between the instrumental error and the 
RMS elevation-change signal. 

 



Here the solution gives the mean surface slope and the rate of elevation change between any two 
subsequent measurement campaigns observing the surface.  This inversion is ill-posed, in that 
there are patterns of elevation change that exactly match the pattern of across-track offsets.   An 
additional criterion is needed to regularize the inversion, to ensure that a solution exists.  Many 
such criteria are possible; I have investigated one that minimizes the difference between any 
short-term elevation rate and the mean elevation rate. This is implemented with a constraint 
equation:  G is augmented with Nc-1 rows 
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and the data-vector is augmented with N-1 zero values.  The strength of this constraint is 
expressed by additional values added to the diagonal of the covariance matrix.  Selecting 
constraint-magnitude values equal to the mean-square value of the campaign-to-campaign 
elevation change rate improves the stability of the inversion, but still allows recovery of 
elevation-change rates at fine time resolution.  As with the one-parameter case, the error rates 
must be rescaled to account for slope-elevation-change ambiguities (figure 3). 

 In the past, I have used the residuals to a single-parameter elevation-change fit to give the 
variations in the elevation rate around its mean (Smith and others, 2009).  This procedure gives 
nearly identical results to the N-parameter inversion described above, but without formal error 
estimates.  As a rule of thumb, the error magnitudes should be on the order of 2/1)1( !

!N  times 
the RMS misfit between a model with linear rate of elevation change and the data, and the 
recovered residuals should usually underestimate the true elevation changes. 

In calculating averages of elevation rates over areas of the ice sheet, one should take into account 
the fact that the errors in elevation measurements are strongly correlated for each track.   For 
uncorrelated errors, the error in the elevation rate for a region would be approximately equal to  
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dtdz /
! is the error in each elevation rate and 

segsN is the number of 
elevation-rate estimates.  This should usually underestimate elevation-rate errors; an approximate 
upper bound is 2/1
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tracks
N is the number of tracks averaged.  The latter 

error estimate is an order of magnitude larger than the former for regions a few tens of kilometers 
wide, but is probably more realistic for most ice-sheet surfaces.  This calculation is discussed in 
more detail in (Howat and others, 2008). 



Data availability 

ICESat data are available through the National Snow and Ice Data center.  Software that can read 
the standard product formats is provided, which can be adapted to provide raw elevation data 
either to IDL or to Matlab 

Satellite photogrammetry 

B
oth radar and laser altimeters suffer from poor resolution when mapping very small scale changes 
in alpine and outlet glaciers, both because the surface elevation changes happen at scales small 
compared to the distance between tracks, and because the surface elevations can be extremely 
rough at scales comparable to the altimeter footprints.  Photogrammetry turns this second 
weakness into an advantage, by identifying surface features that appear in different images taken 
from the same sensor in different positions.  ASTER and SPOT are two satellites that routinely 
make such measurements and offer pre-computed DEM products on scales useful for outlet 
glacier studies.  The accuracy of these measurements depends on the accuracy with which the 

 

Figure 4. Elevation rates calculated from ASTER and ICESat measurements. At left: ASTER 
alone and at right: merged ICESat and ASTER data.  ICESat tracks are shown with the same 
color scale (center). 



satellite position and pointing are known; the estimates provided with the data products are often 
inaccurate, so the height estimates must be corrected to give zero elevation change on exposed 
bedrock.  Because the bedrock often has a very rugged surface, these apparent elevation changes 
can have significant errors, which then propagate into the on-glacier elevation change errors.  For 
ASTER and SPOT, DEMs are accurate only for crevassed areas and for some ablation areas 
where the ice surface is roughened by ablation features.  In Southeast Greenland, where relatively 
slowly-flowing ice funnels from the ice sheet flanks through narrow, strongly crevassed outlet 
glaciers, high-resolution ASTER and low-resolution ICESat elevation-change estimates make a 
complementary set, giving a reasonably detailed picture (figure 4) of volume change for the 2003-
2007 period (Howat and others, 2008). 

Density and accumulation-rate variability 
Once an estimate of the mass-balance rate is formed, its interpretation depends considerably on 
the presumed mechanism behind the change.   Relatively large short-term elevations changes can 
arise from year-to-year, or even month-to-month variability in the weather:  A season’s heavy 
snowfall can easily overshadow slow, decadal-scale drawdown in an ice sheet.   

Different estimates are available for the magnitude of this signal: (Vanderveen, 1993)  considered 
the magnitude of surface elevation variations that would be observed over different averaging 
periods for an unchanging climate and unchanging ice dynamcs.  The cumulative sum of many 
years’ accumulation a red-noise random signal, subsamples of which are expected to have trends 
on the order of  σb(Nyears-1)-1/2, where σb is the interannual variability in the accumulation rate.  
Only over very long time spans does this signal begin to disappear, as these variations are muted 
by the changes in ice dynamics they drive by altering the shape of the ice surface.  More recent 
studies  (Arthern & Wingham, 1998, Wingham, 2000) ,considered the next level of complication 
in this problem, investigating how variations in the accumulation rate combine with variations in 
the near-surface density.  Since fresh snow is on the order of three times less dense than ice, this 
year’s anomalous snowfall produces an anomaly almost three times larger in the elevation-rate 
trend for the last century than does the anomaly for snow that fell a century ago.  They 
expressed this result mathematically by calculating the transfer function between perturbations in 
the surface accumulation rate and perturbations in the ice-sheet mass balance rate, then integrating 
these transfer functions over the range of frequencies that are sampled in measurement intervals 
of different lengths.  The upshot of this calculation is that the total variability, 2
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Here  and  are the interannual variability in the accumulation rate and the surface density, 
and rm(T) and rρ(T)  are two functions that describe the sensitivity of the firn thickness to 
accumulation and density variations, respectively.  These functions are derived for a low-
accumulation site (Byrd Camp, West Antarctica) and for Camp Cenntury in Greenland, where 
the accumulation is higher and the firn column is thicker (figure 5).  Because firn remains porous 
longer at Byrd, the processes have a longer memory, and surface height variability is 

proportionally larger at Byrd.   In principle, one should be able to calculate rm(T) and rp(T) based 
on published estimates of the density profile and the accumulation history for different sites 
around Greenland and Antarctica.  However, the calculation is somewhat daunting, and the most 
practical plan is typically to categorize a given field site as “Byrd-like” or “Century-like” and to 
interpolate values from the plots in figure 5.   For Antarctica, reasonable values for 
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For most purposes, this formula should give estimates of the right order of magnitude, even if it 
fails to capture the effects in site-to-site variations in the density profile. 

A final factor in accounting for short-term surface height variability is season height variations.  A 
time series that begins in one season and ends in another will likely give a biased estimate of the 
long-term rate of elevation change.   Approaches to minimizing this error have ranged from fitting 
a seasonal model that includes a sinusoidal height variation term, to incorporation of a 

 

Figure 5. Top: rp as a function 
of the averaging interval for 
camp Century (dotted line) and 
for Byrd (solid line). 

Bottom: rm as a function of 
averaging interval for camp 
century and for Byrd. 

Figures from Wingham (2000). 



temperature-driven firn density model (Zwally and others, 2005), but the most successful and 
straightforward approach is to ensure that elevation time series always begin and end in the same 
season.  Beyond this, autoregressive models that can capture season-to season height variations 
in detail are modestly superior to  (Li & Davis, 2006) fitting procedures that rely on a consistent 
seasonal cycle.  For ICESat data, the time series of measurements is too sparse to allow detailed 
correction for seasonal effects, but since most measurements were collected in campaigns during 
November or February and March, the effects of seasonality should not be affected by the 
complete seasonal cycle.  

Bed-elevation change 
Bed elevation changes result from the slow relaxation of the lithosphere after changes in ice 
loading.  The rate of change depends on how far away the change in ice loading happened, and on 
how recently; Rapid changes in bedrock elevation in Patagonia have been measured in response to 
glacier retreat over the past two decades (Dietrich and others, 2010), and slow changes in the land 

elevation in Wisconsin are measurable in response to retreat of the Laurentide ice sheet 
 

Figure 6. Isostatic and elastic uplift rates for 
stations in West Antarctica (red bars), as 
compared to two global geodetic change 
models : ICE5G(green contours) and IJ05 
(blue contours.)  Figure from Bevis and 
others, 2009. 



The change in bed elevation is likely to be the smallest term in the geodetic mass-balance 
equation, but its fractional uncertainty is potentially large, and in interior Antarctica where the 
other terms are likely to be small, this can influence some mass-balance estimates.  

Figure 6 shows bedrock-elevation change rate estimates for West Antarctica, measured on widely 
scattered nunataks, compared to model predictions from the global isostatic uplift models IJ05 
and ICE-5G.  Although the peak modeled and measured uplift rates are small in absolute terms, 
integrated over West Antarctica, the average difference between the two yields an ice sheet mass 
balance uncertainty of around 33 GT/yr (Bevis and others, 2009). 

Mass-budget estimates of mass balance 
An alternate procedure for estimating mass-balance changes is the mass-budget technique.  In this 
case, the rate at which mass crosses the boundaries of a glacier is integrated, giving a mass balance 
rate: 
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Writing the integral over the top surface of the glacier in terms of the accumulation (b) and 
ablation (a) rates gives: 
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The second term on the right hand side of the equation is the ice flux across the vertical 
boundaries of the glacier. This can be further simplified using a factor equal to the ratio of the 
depth-averaged mean speed divided by the surface speed: 
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For a wide glacier frozen to its bed, φ=0.8, while for a glacier experiencing little vertical shear, 
sliding at its bed, φ=1.  Values for φ are chosen based either on surface speeds and assumptions 
about the ice rheology, or on independent information that allows estimation of the basal sliding 
rate; for most cases considered here, φ≈1. 
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here h(s) is the surface height along the glacier perimeter. 



To simplify these calculations, the side boundaries of the glacier can be chosen to follow 
flowlines, and the upstream boundary can be chosen to follow a flow divide.  By definition, these 
boundaries have zero perpendicular velocity, so the only remaining terms are the surface mass 
balance and the flux across the downstream boundary.  This means that the only place where the 
speed and the ice thickness must be known accurately is the downstream boundary. 

Mass-balance rates estimated by the mass-budget have three major sources of uncertainty:   
Uncertainty in the surface mass balance, uncertainty in the surface speed, and uncertainty in the 
shape factor.  Of these, the uncertainty in the surface mass balance is likely to be the largest 
component, especially when averaged over short periods, as can be seen by the substantial inter 
annual variability in surface mass balance derived from models, and from the variability in 
estimates between different modeling studies (e.g.  (Ettema and others, 2009).  The downstream 
flux integral can be calculated directly, using ice-surface speeds from SAR inteferometry, or 
estimated based on a few centerline surface speed measurements and a model of how speed varies 
in the across-flow direction (e.g. (Shabtaie & Bentley, 1987).  



Because the ice thickness must be known at the downstream boundary, and the locations of ice-
thickness measurements are often determined as much by logistic concerns as much as by 
glaciological ones, the downstream mass-balance gate may not coincide with the bottom of the 
glacier.  To calculate the glacier’s total contribution of the glacier to sea level, the contribution of 
the region between the flux gate and the grounding line must be estimate as well. (Rignot & 
Kanagaratnam, 2006) treated this problem by assuming that the ice-flux difference between the 
gate and the front was equal to a climatological mean surface mass balance field (based on 
meterological reanalysis data from 1960-1990) averaged over this area.  They then scaled this 
reference discharge by the measured mean velocity changes at the ice front, to estimate ice 
discharge changes in 1996, 2000, and 2005.  This technique is equivalent to using the flux at the 
gate and the surface mass balance to estimate the mean thickness at the ice front; it has the 
(acknowledged) defect that if the ice below the reference gate was not in equilibrium with the 
1960-1990 climate, the grounding line flux will be inaccurate.  A potential cure for this error is to 
calculate the grounding-line anomaly during a year when both the surface speed and the surface 
elevation-change rate can be measured; these measurements together close the mass budget for the 
near-grounding-line region. 

 
Figure 7.  Mass balance changes for Kangerdlugssuaq and Helheim Glaciers between 
2000 and 2007.   Flux estimates form Rignot and Kanagaratnam (2006) are 
compared with flux estimates based on additional velocity and surface height data.  
Bars show elevation differences calculated using ASTER image data.  Figure is from 
Howat and others, 2007. 



An alternate approach to the downstream boundary flux is possible when the glacier terminates 
in an ice shelf.  In this case, measurements of the surface height on the floating ice can be 
converted to estimates of the ice thickness:  
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Here an estimate of the mean ice density is needed, as is a measurement of the surface height.  
This formula requires that the ice be in hydrostatic equilibrium with the water, meaning that 
measurement of the surface height must be made several ice thicknesses away from the grounding 
line (c.f. Helen), which brings an additional uncertainty because melting at the ice base 
immediately at the grounding line can be as large as several meters per year. (Rignot and others, 
2008) used a digital elevation model of Antarctica to derive surface heights, and a time-dependent 
firn densification model driven by meterological reanalysis data to calculate ! .  These estimates, 
combined with SAR surface speeds give discharge glaciers around Antarctica.   

A similar procedure (Rignot & Jacobs, 2002) gave steady-state grounding-line melt rates for 
glaciers around Antarctica.  In this case, the melt rate is estimated from the flux-divergence 
equation, combined with an estimate of the ice thickness based either on radar sounding or on the 
hydrostatic equation.   A potentially important pitfall in this calculation is that DEMs of 
Antarctic ice shelves based on radar altimetry often have positive (high) bias at the grounding 
line, because the radar preferentially tracks the higher surface of the grounded ice rather than the 
lower surface of the ice shelf.  The effective gap in the data at the grounding line produces surface 
heights that are up to 15 meters higher than the grounding line elevation, which leads to melt-rate 
errors of up to 15-20 percent.  Estimates of melt rates that use either RES thickness estimates or 
laser altimetry largely avoid this problem. 

 

Temporal variability in mass-budget estimates. 

The ice thickness is one of the most basic quantities derived from radio-echo sounding 
measurements.  It is generally more accurate than the bedrock height estimate, because the vertical 
position of the airplane is not  a source of error.  However,  if the ice thickness is not measured at 
the same time as the surface speed, and if the glacier thickness has changed between the two 
measurements, the ice-thickness change must be taken into account.  An extreme example of this 
is Helheim Glacier (figure 7), which accelerated by around 30%, from 22 m/day in 2000, to 30 
m/day in the summer of 2005.  The glacier subsequently slowed, but was still moving about 10% 
faster in mid 2006 than it was in 2000.  However, the vigorous thinning brought about by the 
glacier’s acceleration reduced the grounding-line flux significantly, and the 2006 flux was not 
significantly different from the 2000 flux (Howat and others, 2007).  In this case, the flux could 
be corrected for the changes in the ice thickness, because multiple satellite photogrammetry-based 
measurements of the surface elevation were available.  A sufficiently detailed history of the strain 



rates in the glacier outlet might also allow one to estimate changes in the thickness, but this would 
probably be less accurate than using ice-thickness measurements. 

Seasonal variations in the mass budget. 
Recent monthly observations of outlet glacier velocities in Greenland have shown that many 
ocean-terminating glaciers undergo large accelerations in the spring, and have a minimum velocity 
in the late winter.  For example, Jakobshavn glacier speeds up by 10-20% between May and July 
.  The reasons for the summer speedup probably vary from glacier to glacier; in some it is 
probably driven by calving rates at the glacier front, which are driven in turn by the strength of 
the mélange of ice rubble floating in front of the glaciers (Amundson and others, 2010); in other 
glaciers it may be a result of basal hydrology.  In any case, mass-budget estimates based on 
winter velocities (e.g. Rignot and Kanagaratnam, 2006) may underestimate discharge rates as a 
result of this, while estimates based on optical imagery from the summer would tend to 
overestimate annual discharge.  Seasonal variations in accumulation are less important, in that 
mass budget estimates show the difference between the accumulation averaged over longer 
periods of time and the current discharge. 
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