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What makes water-terminating glaciers
important?

» They are very common (This is a particular feature of the way glacier
erosion works)

» They can behave seemingly erratic (advancing when all others are
retreating, or vice versa)

» This makes all global assessments of glacier change challenging
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What makes water-terminating glaciers
interesting?

v

They are spectacular
They flow fast
They change a lot

v
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Their behavior can be
asynchronous with climate L)
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Example: Jakobshavn Isbrae
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Example: Hubbard Glacier

2013
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Tidewater vs lake-calving

Similar water depths, but very different morphology, ice flux, etc
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Lecture goals

» Understand the tidewater glacier cycle
» Understand why a glacier can simultaneously thin, accelerate and
retreat

» Think about the importance of sub-aqueous melting and how that can
explain different morphologies of water-terminating glaciers
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Mass budget of tidewater and outlet glaciers

» Glaciers ending in water have a
non-zero flux across their termini

» The magnitude of this flux can
change rapidly

» In many situations the mass loss
through discharge into the ocean
is as important as surface
melting and sometimes it
dominates surface melting
entirely.
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Ice flux at Le Conte Glacier, SE Alaska
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Reason for variability

» The glacier front is a free boundary

» If ice supply is given by u and the calving velocity uc, then the length
of the glacier L is given by dL/dt = u — u,

» Generally, the length change of a glacier is one to two orders of
magnitude smaller than either v or w..

» This indicates that ice velocity and calving fluxes are not independent
of each other.

» But there are important exceptions to this, such as rapid collapses of
floating ice
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Columbia Glacier, Alaska
Oct 5, 2007 - Nov 7, 2010
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Calving

» |ce discharge
consists of
mechanical
break-up and
melting

z
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» The combination of
both is known as
Frontal ablation

» Calving occurs at all
sizes (power law?)
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Calving mechanisms

» Fracture
mechanics

» Damage
mechanics

» Empirical
laws
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Calving mechanims

Linear Elastic Fracture Mechanics (LEFM)

» Crevasses open when tensile stress exceeds the fracture toughness
(Mode I failure)

» The weight of the ice counteracts the tensile stress
» Water in crevasses helps opening crevasses

» Conclusion: Crevasses can propagate through the entire ice column, if
sufficient water is present
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The Benn calving law

» If crevasses reach to the bottom
of the ice the glacier calves

» Crevasse depth depends on
strain rate and ice thickness

» Water helps crevasse penetration

» Benn postulate: If a crevasse
reaches sea level, the glacier

Water level

— i

T Zy

al lie

Fig. 12. Schematic illustration of first-order calving in response to
longitudinal stretching. Surface crevasses propagate downward to a
depth d in response to the velocity gradient 0Ug/éx. Calving is
assumed to occur when o=/ (after Benn et al., in press).

CalVeS Benn et al., 2007
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Damage mechanics

Papers by Antoine Pralong
(ETH Ziirich)

Introduce a new variable for
damage w € [0, 1], where w =0
signifies total damage, i.e. a
crevasse

This has been used to model
dry-calving at hanging glaciers

There are efforts to introduce a
damage variable into shallow
shelf models

»
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Empirical laws: Water depth
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retreating glacier
Fig. 2. Varation of calving rate with water depth for tidewater and
freshwater calving glaciers in different regions. From Haresign (2004).

Benn et al., 2007
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Empirical laws: Floatation criterion

» Calving rate is such that a certain cliff height
above floatation is maintained

» Works quite well for grounded tidewater
glaciers, but does not allow floating tongues
to develop

» Physical justification: Well grounded ice
bergs do not easily calve, even if full
thickness fracture has occurred.
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Causes for changes in calving flux

» Break-up of ice

shelves leads to
large changes in ice
flux

This is known as
the buttressing
effect

Examples: Larsen B
Ice Shelf, floating

to n gu es I n Fig. 7. MODIS image of Larsen ice shelf, Antarctic Peninsula. Prominent nfis (indicated by black amows) occur in areas of high extending flow. Rift
growth is in the process of isolating a large tabular berg (whike amow). Image from hitp2/nside.org (Hamn ctal., 2005).
Greenland Benn et al., 2007
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Thinning and acceleration

» Basal motion is dependent on the

effective pressure: peg = Pice — Pwater o ‘\ T
\’ ;2002
» Water pressure at the base of a oo N o]
tidewater glacier is determined by :
sealevel i ]

» Thinning ice leads to lower overburden

pressure, hence lower effective °
pressure, and therefore higher rates of

o 10 20 30 40
Distance from 1992 frant (km}

50
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Figure 2 Profiles of spackle-tracked (see Methods), Landsat, aiborne feature-tracked

basal mOtlon spesd framalang the ig. 1aandasa from

position of the 1992 calving front. One-sigma error bars are shown al several -kiometre
intervals. The 1985 {rel. €), 2002 and 2008 data setswere sparsely sampled, so anly

» Higher VeIOC|t|eS Iead to increased |Ce individual paint measurements are plotted. The data were acquired over the periods from

February to March 1992, December 1993 fo March 1394, November 1395, Oclober to

discharge and surface lowering

> This can lead to the disintegration of ~ ’ou&"n <t 2! 2004

entire icefields.

Novembar 2000, May 2001, July to Septerber 2002, and March to May 2003,

acceleration
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Flux vs thickness relations

v

Pfeffer (2007, A simple mechanism for irreversible glacier retreat)
derived a stability index for tidewater glaciers

Ice flux depends on ice thickness in two ways: thinner ice decreases ice
deformation, but it also reduces effective pressure leading to higher
rates of sliding

v

» This can be formalized in a stability index by calculating dq/0h
0q/0h < 0 indicates unstable behavior

v
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Inland effects

Tidewater glacier retreat can lead to the disappearance of entire icefields.

Chris Larsen, UAF
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Tidewater glacier cycle
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The tidewater glacier cycle

The large dynamic influence of the ocean geometry can lead to glacier
behavior that is sometimes de-coupled from climate and leads to the
tidewater glacier cycle

» A tidewater glacier in retreat will continue retreat until calving
stabilizes (shallow water or narrow fjord)

» At this point, the surface balance is often very positive

» The glacier starts advancing by protecting itself from deep water by
pushing a terminal moraine

» The glacier reaches a state where the surface balance becomes near
zero

» A period of warmer climate can now trigger a retreat

» This cycle can take decades or centuries.

Tidewater glacier cycle 30 /55



The tidewater glacier cycle

» Note that the AAR
is not a good

indicator of glacier
health

Tidewater glacier cycle
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Glacier advance: Taku Glacier

Tidewater glacier cycle 32 /55



Glacial erosion

Terminus Profile 1952, 1994, 2003-04
. . 250 E ion rates,
» Proglacial moraines make venesma1 | 1952- 1984.= 1.1 %0.2 miyr

> . 1004- 2003 =31+1.2 miyr
glacier advance possible

» Advancing glaciers ol ]
override and then - D ]

. o
excavate till opm :

» This happens at rapid
rates (up to meters per
year) 500 ] 500 1000 00 T

An integral part of the tidewater glacier cycle is bedrock evolution

Tidewater glacier cycle 33 /55
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Sub-aqueous melting
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Thermodynamics

» Energy content of water (temperature): Water has a large specific
heat

» Density structure of water (temperature, salinity) determines
convection patterns and fluxes

» Polar oceans and fjords are density dominated by salinity, not
temperature (cold fresh water overlies warm saline water)

Sub-aqueous melting 35 /55



Ocean terminating, floating tongue, cold

refreezing

melting

» Subglacial discharge is small

» Subshelf convection is primarily driven by buoyant meltwater

» Supercooled meltwater can lead to refreezing

» Example: Pine Island Glacier (melt rates 10-20 myr~! in channels,

temp forcing 1.5 K, Stanton et al., 2013, Science)

Sub-aqueous melting 36 / 55



» Subglacial discharge is larger

» Subshelf convection is primarily driven by subglacial freshwater exiting
at the grounding line

Sub-aqueous melting 37 /55



Example: Jakobshavn Isbrae

1

Meltrates exceeded 200 m yr—
when floating tongue was
seemingly stable (based on
topography and velocity
measurements from mid 1980s)
An increase in temperature
forcing by about 1 K led to an
additional 70 m of thinning and
break-up of the floating tongue

» This was followed by a doubling

of ice flux

Sub-aqueous melting
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Ocean, grounded, warm

Turbulent convection driven

by bouyancy 1
» Meltrates exceed 10 md~* and

vary seasonally

o aerirater » Temperature forcing is large (up
to 10 K)

» Subglacial discharge is large

warm saline water

Sub-aqueous melting 39 /55



Example: LeConte Glacier, Alaska

Large discharge and strong currents

Sub-aqueous melting 40 / 55



Cold lakes

» Subglacial discharge can be large

» But: lake is cold and subglacial freshwater does not induce strong
subshelf currents

» Example Yakutat Glacier: Lake temperature less than 1° C, thinning
of tongue mainly by surface ablation; Triissel et al., 2013

» Thinning is dominated by surface mass balance

Sub-aqueous melting 41 / 55



Bigger and warmer lakes

v

Bigger lakes are likely to be warmer due to a large dark surface
Bottom water is very likely to be 4° C

Subglacial discharge would be buoyant and temperature forcing
significant

Such lake terminating glacier should look more like tidewater glacier
with less extreme forcing (Patagonia)

v

v

v
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Summary

» The difference in observed meltrates can be explained by differences in
forcing (ambient water temperature, salinity and amount of freshwater
discharge).

» This explains different morphologies of glacier termini.

» |ce temperature does play a role (greater structural integrity of a cold
floating tongue)

Sub-aqueous melting 43 / 55
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Relevance of submarine melting (Conclusion)
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Ocean, floating tongue

» Melting can occur along a large fraction of the ice underside
» Changes in forcing can have a large cumulative effect
» This can lead to a large scale destabilization of the floating ice

» Example: Jakobshavn Isbra. This is possibly ongoing in the
Amundson Sea Embayment (Thwaites Glacier has already lost floating
ice, Pine Island might do so)

» Some ice shelves appear more stable at the moment (Ronne-Filchner,
Ross)
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Ocean terminating and grounded

v

Melting occurs over small area only (calving face)

v

Melt rates are often very high (10s of m/d), but so are ice fluxes

v

In some, but not all cases melting appears to be the dominant
mechanism of frontal ablation (Motyka et al., 2003, 2013;
Bartholomaus et al., 2013)

An indication is the amount of calving submarine ice

v
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Jakobshavn Isbrae

Ice velocity: 40 m/d, submarine melting: perhaps 1 m/d, melting is not
directly relevant
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Jakobshavn Isbrae: The ice mélange

Glacier flow

» Submarine melt does not appear to be directly
relevant to calving (order of magnitude too
small)

Glacier flow

» However, strength of the proglacial mélange
does appear to be relevant, and can inhibit

calving (Amundson et al., 2010, JGR)

» Ocean conditions and melt thus exhibit an
indirect influence on calving and ice flux

Glacier flow
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Example: LeConte Glacier, Alaska

submarine calving events (at certain times)
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Lake calving glacier

» For cold lakes, surface mass balance determines thinning and
disintegration of floating ice (e.g. Triissel et al., 2013)

» Glaciers calving into warmer lakes with 4° C bottom water might
behave more like tidewater glaciers
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Temperate tidewater glaciers

» |f a small floating tongue is
formed, it will quickly melt and
disintegrate

melting _

o

» This leads to large stresses and
deformation rates in the
terminus area

» Fast flow and high calving rates
are the consequence
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Cold lakes

» Floating tongue can form

» Thickness gradients are smaller, decreasing strain rates and stresses

» There is less crevassing, slower flow, lower calving rates
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Some additional remarks: Fluxes at a terminus

> Terminus position change = Ice flux - Frontal ablation (L = Q — F)
» These terms can be different by two orders of magnitude

» Example: Hubbard Glacier: L < Q ~ F. This implies that ice flux and
frontal ablation are not independent mechanisms

» Example: Jakobshavn winter advance: [~ Q > F
» Example: Jakobshavn spring break up: L ~ F > Q

» This shows that various controls operate at different glaciers and at
different times. This pertains to the master-slave discussion of Benn
et al.
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» Lake calving and tidewater
glaciers can show large volume
change signals

» But: many lake-calving glaciers
have calving rates that are not
very significant compared to
surface ablation

» This can be understood in terms
of 'macroscopic glacier theory’
(e.g. Harrison, 2001, 2013;

Larsen et al., 2007 Liithi, 2009)

-
—12-10-8-6-4-20 2 4
Ice Thickness Rate of Change

222°
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High sensitivity glaciers

> Retreat has two effects: loss of low altitude ice (negative feedback)
and lowering of surface (positive feedback)

» Negative feedback is suppressed when the bed slope at the terminus is
zero or negative

» Water terminating glaciers can react sensitively to changes (both
positive and negative) in addition to the sensitivity imposed by calving
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