Inverse methods in glaciology

Martin Truffer

University of Alaska Fairbanks

McCarthy, Summer School, 2014
General Problem Setting

Formal problem statement

Solution methods
Outline

General Problem Setting

Formal problem statement

Solution methods
General Problem

Common situation in geophysics:

- You have observables (data d)
General Problem

Common situation in geophysics:

- You have observables (data d)
- You have a certain understanding of the world that is expressed in a set of equations (forward model G)
General Problem

Common situation in geophysics:

- You have observables (data d)
- You have a certain understanding of the world that is expressed in a set of equations (forward model G)
- You would like to derive a set of parameters (model m)
General Problem

Common situation in geophysics:
- You have observables (data \(d\))
- You have a certain understanding of the world that is expressed in a set of equations (forward model \(G\))
- You would like to derive a set of parameters (model \(m\))
- You would know how to get from \(m\) to \(d\) (forward model), but the reverse takes special treatment
Examples of inverse problems

- Finding the seismic velocity structure of the Earth from measurements of seismic arrival times
Examples of inverse problems

- Finding the seismic velocity structure of the Earth from measurements of seismic arrival times
- Finding oil by active seismics
Examples of inverse problems

- Finding the seismic velocity structure of the Earth from measurements of seismic arrival times
- Finding oil by active seismics
- Finding a brain tumor with a CAT scan
Examples of inverse problems in glaciology

- Finding basal conditions (e.g. slipperiness) from surface velocity observations
Examples of inverse problems in glaciology

- Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers
Examples of inverse problems in glaciology

- Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers
- Finding ice thickness from gravity anomalies
Examples of inverse problems in glaciology

- Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers
- Finding ice thickness from gravity anomalies
- Finding initial conditions for ice sheet models given all available observations
Outline

General Problem Setting

Formal problem statement

Solution methods
The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G : m \rightarrow d$
The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G : m \rightarrow d$

We would like to go the other way, but G might not have a well-defined inverse.
Forward model

- The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G : m \rightarrow d$
- We would like to go the other way, but G might not have a well-defined inverse
- Finding m from d is often an *ill-posed* problem
Ill-posed problems

- The problem might not have a solution
Ill-posed problems

- The problem might not have a solution
- The problem might have many solutions
Ill-posed problems

- The problem might not have a solution
- The problem might have many solutions
- The solution might be badly defined, i.e. small changes in input lead to large changes in output
Ill-posed problems

- The problem might not have a solution
- The problem might have many solutions
- The solution might be badly defined, i.e. small changes in input lead to large changes in output
- Honest mathematicians keep their hands off such problems
Linear inverse problems

- Linear means that the map G is linear
Linear inverse problems

- Linear means that the map G is linear
- If G is linear, the data d can be written as a scalar product in an appropriate space: $d = (g, m)$
Linear inverse problems

- Linear means that the map G is linear
- If G is linear, the data d can be written as a scalar product in an appropriate space: $d = (g, m)$
- In discretized form this is $d = Gm$, where G is a matrix of dimension $N \times M$
Linear inverse problems

- Linear means that the map G is linear
- If G is linear, the data d can be written as a scalar product in an appropriate space: $d = (g, m)$
- In discretized form this is $d = Gm$, where G is a matrix of dimension $N \times M$
- For linear inverse problems useful theorems can be derived (such as existence of solutions, etc)
Linear inverse problems

- Linear means that the map G is linear
- If G is linear, the data d can be written as a scalar product in an appropriate space: $d = (g, m)$
- In discretized form this is $d = Gm$, where G is a matrix of dimension $N \times M$
- For linear inverse problems useful theorems can be derived (such as existence of solutions, etc)
- Non-linear problems are much more difficult. Often the methods involve linearization and iteration.
Outline

General Problem Setting

Formal problem statement

Solution methods
Norm minimization

- Example: Finding velocities at the base of a glacier from surface observations
Norm minimization

- Example: Finding velocities at the base of a glacier from surface observations
- The discretized problem has many solutions. How do you choose one?
Norm minimization

- Example: Finding velocities at the base of a glacier from surface observations
- The discretized problem has many solutions. How do you choose one?
- Minimize a property of the solution that can be expressed as a norm
Norm minimization

- Example: Finding velocities at the base of a glacier from surface observations
- The discretized problem has many solutions. How do you choose one?
- Minimize a property of the solution that can be expressed as a norm
- The choice of norm determines the solution (user input or a prior)
Generating data to be used in an example

Basal velocity that solves exactly for the given data

- u_{ch}
- u_b
- u_s

$x \times 10^4$

0 0.5 1 1.5 2 2.5
Finding the smallest solution

Basal velocity that solves exactly for the given data

Solution methods
Finding the smoothest solution

Smooth basal velocity that solves exactly for the given data

Velocity m a⁻¹

Longitudinal coord. (m)

x 10^4
Choice of norm

- Both of the previous solutions are exact solutions
Choice of norm

- Both of the previous solutions are exact solutions
- The only difference is the choice of norm that is minimized to select among all possible solutions

\[\|f\|_s = \left(\gamma f^2(a) + b \int_a^x (f')^2 \, dx \right)^{1/2} \]

penalizes roughness
Choice of norm

- Both of the previous solutions are exact solutions.
- The only difference is the choice of norm that is minimized to select among all possible solutions.
- For example, the norm $\| f \|_s = \left(\gamma f^2(a) + \int_a^b (f'(x))^2 \, dx \right)^{1/2}$ penalizes roughness.
Accounting for errors

- Observations always have errors
Accounting for errors

- Observations always have errors
- Forward models are always imperfect
Accounting for errors

- Observations always have errors
- Forward models are always imperfect
- A perfect fit to data is neither expected nor desirable
Accounting for errors

- Observations always have errors
- Forward models are always imperfect
- A perfect fit to data is neither expected nor desirable
- We find models that fit data within a certain tolerance: $\| Gm - d \| \leq T$
Accounting for errors

- Observations always have errors
- Forward models are always imperfect
- A perfect fit to data is neither expected nor desirable
- We find models that fit data within a certain tolerance:
 \[\| Gm - d \| \leq T \]
- This is done by minimizing an appropriate functional:
 \[U[m, \lambda] = \| m \| - \lambda (T^2 - \| \Sigma^{-1}(d - Bm) \|) \]
Accounting for errors

- Observations always have errors
- Forward models are always imperfect
- A perfect fit to data is neither expected nor desirable
- We find models that fit data within a certain tolerance:
 \[\| Gm - d \| \leq T \]
- This is done by minimizing an appropriate functional:
 \[U[m, \lambda] = \| m \| - \lambda (T^2 - \| \Sigma^{-1}(d - Bm) \|) \]
- \(\lambda \) is a Lagrange multiplier that can be solved for if \(T \) is known
Finding a solution within a tolerance
Bayesian methods

- Information is thought of as probability distribution
Bayesian methods

- Information is thought of as probability distribution
- Ex: Observations with random errors \(\rho(d) \propto \exp - (d/\sigma)^2 \)
Bayesian methods

- Information is thought of as probability distribution
- Ex: Observations with random errors $\rho(d) \propto \exp - (d/\sigma)^2$
- One makes a prior assumption about the model parameters $\rho(m)$
Bayesian methods

- Information is thought of as probability distribution
- Ex: Observations with random errors $\rho(d) \propto \exp\left(-\frac{d}{\sigma}\right)^2$
- One makes a prior assumption about the model parameters $\rho(m)$
- Apply Bayes’ Theorem: $\rho(m|d) = \frac{\rho(m)\rho(d|m)}{\rho(d)}$
Bayesian methods

- Information is thought of as probability distribution
- Ex: Observations with random errors $\rho(d) \propto \exp\left(-(d/\sigma)^2\right)$
- One makes a prior assumption about the model parameters $\rho(m)$
- Apply Bayes’ Theorem: $\rho(m|d) = \frac{\rho(m)\rho(d|m)}{\rho(d)}$
- The probability of m given d is equal to the prior assumption times the probability of d given m (the forward model) divided by the probability distribution of the data
Iterative methods

- Make an assumption about the model parameters
Iterative methods

- Make an assumption about the model parameters
- Calculate the misfit to observations
Iterative methods

- Make an assumption about the model parameters
- Calculate the misfit to observations
- Calculate a correction to lower the misfit
Iterative methods

- Make an assumption about the model parameters
- Calculate the misfit to observations
- Calculate a correction to lower the misfit
- Stop once the data are fit *well enough*
What is well enough?

The L-curve method
Commonalities of inverse methods

- Many methods turn out to be identical on a fundamental level
Commonalities of inverse methods

- Many methods turn out to be identical on a fundamental level
- Each method finds a solution and not the solution
Commonalities of inverse methods

- Many methods turn out to be identical on a fundamental level
- Each method finds a solution and not the solution
- A solution of the inverse problem is a set of model parameters that is consistent with the forward model and the data within errors
Commonalities of inverse methods

- Many methods turn out to be identical on a fundamental level
- Each method finds a solution and not the solution
- A solution of the inverse problem is a set of model parameters that is consistent with the forward model and the data within errors
- Each method involves a number of assumptions