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General Problem

Common situation in geophysics:
I You have observables (data d)

I You have a certain understanding of the world that is expressed in a
set of equations (forward model G )

I You would like to derive a set of parameters (model m)
I You would know how to get from m to d (forward model), but the

reverse takes special treatment
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Examples of inverse problems

I Finding the seismic velocity structure of the Earth from measurements
of seismic arrival times

I Finding oil by active seismics
I Finding a brain tumor with a CAT scan
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Examples of inverse problems in glaciology

I Finding basal conditions (e.g. slipperiness) from surface velocity
observations

I Finding past accumulation from radar layers
I Finding ice thickness from gravity anomalies
I Finding initial conditions for ice sheet models given all available

observations
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Forward model

I The forward model consists of an equation or a set of equations that
can calculate observables from model parameters: G : m→ d

I We would like to go the other way, but G might not have a
well-defined inverse

I Finding m from d is often an ill-posed problem
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Ill-posed problems

I The problem might not have a solution

I The problem might have many solutions
I The solution might be badly defined, i.e. small changes in input lead

to large changes in output
I Honest mathematicians keep their hands off such problems
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Linear inverse problems

I Linear means that the map G is linear

I If G is linear, the data d can be written as a scalar product in an
appropriate space: d = (g ,m)

I In discretized form this is d = Gm, where G is a matrix of dimension
N ×M

I For linear inverse problems useful theorems can be derived (such as
existence of solutions, etc

I Non-linear problems are much more difficult. Often the methods
involve linearization and iteration.
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Norm minimization

I Example: Finding velocities at the base of a glacier from surface
observations

I The discretized problem has many solutions. How do you choose one?
I Minimize a property of the solution that can be expressed as a norm
I The choice of norm determines the solution (user input or a prior)
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Generating data to be used in an example
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Finding the smallest solution
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Finding the smoothest solution
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Choice of norm

I Both of the previous solutions are exact solutions

I The only difference is the choice of norm that is minimized to select
among all possible solutions

I For example, the norm ‖ f ‖s=

(
γf 2(a) +

b∫
a

(f ′(x))2dx

)1/2

penalizes

roughness
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Accounting for errors

I Observations always have errors

I Forward models are always imperfect
I A perfect fit to data is neither expected nor desirable
I We find models that fit data within a certain tolerance:
‖Gm − d ‖≤ T

I This is done by minimizing an appropriate functional:
U[m, λ] =‖m‖ −λ(T 2− ‖Σ−1(d − Bm)‖)

I λ is a Lagrange multiplier that can be solved for if T is known
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Finding a solution within a tolerance
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Bayesian methods

I Information is thought of as probability distribution

I Ex: Observations with random errors ρ(d) ∝ exp−(d/σ)2

I One makes a prior assumption about the model parameters ρ(m)

I Apply Bayes’ Theorem: ρ(m|d) = ρ(m)ρ(d |m)
ρ(d)

I The probability of m given d is equal to the prior assumption times the
probability of d given m (the forward model) divided by the probability
distribution of the data
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Iterative methods

I Make an assumption about the model parameters

I Calculate the misfit to observations
I Calculate a correction to lower the misfit
I Stop once the data are fit well enough
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What is well enough?

The L-curve method
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Commonalities of inverse methods

I Many methods turn out to be identical on a fundamental level

I Each method finds a solution and not the solution
I A solution of the inverse problem is a set of model parameters that is

consistent with the forward model and the data within errors
I Each method involves a number of assumptions
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