

Inverse methods in glaciology

Martin Truffer

University of Alaska Fairbanks

McCarthy, Summer School, 2014

General Problem Setting

Formal problem statement

Solution methods

Outline

General Problem Setting

Formal problem statement

Solution methods

Common situation in geophysics:

► You have observables (data d)

Common situation in geophysics:

- ► You have observables (data d)
- ▶ You have a certain understanding of the world that is expressed in a set of equations (forward model *G*)

Common situation in geophysics:

- ► You have observables (data d)
- ▶ You have a certain understanding of the world that is expressed in a set of equations (forward model *G*)
- ▶ You would like to derive a set of parameters (model m)

Common situation in geophysics:

- ► You have observables (data d)
- ▶ You have a certain understanding of the world that is expressed in a set of equations (forward model *G*)
- ► You would like to derive a set of parameters (model m)
- ▶ You would know how to get from *m* to *d* (forward model), but the reverse takes special treatment

Examples of inverse problems

► Finding the seismic velocity structure of the Earth from measurements of seismic arrival times

Examples of inverse problems

- ► Finding the seismic velocity structure of the Earth from measurements of seismic arrival times
- ► Finding oil by active seismics

Examples of inverse problems

- Finding the seismic velocity structure of the Earth from measurements of seismic arrival times
- Finding oil by active seismics
- Finding a brain tumor with a CAT scan

► Finding basal conditions (e.g. slipperiness) from surface velocity observations

- ► Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers

- ► Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers
- ► Finding ice thickness from gravity anomalies

- Finding basal conditions (e.g. slipperiness) from surface velocity observations
- Finding past accumulation from radar layers
- Finding ice thickness from gravity anomalies
- Finding initial conditions for ice sheet models given all available observations

Outline

General Problem Setting

Formal problem statement

Solution methods

Forward model

▶ The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G: m \rightarrow d$

Forward model

- ▶ The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G: m \rightarrow d$
- We would like to go the other way, but G might not have a well-defined inverse

Forward model

- ▶ The forward model consists of an equation or a set of equations that can calculate observables from model parameters: $G: m \rightarrow d$
- ► We would like to go the other way, but *G* might not have a well-defined inverse
- ightharpoonup Finding m from d is often an ill-posed problem

▶ The problem might not have a solution

- ▶ The problem might not have a solution
- ▶ The problem might have many solutions

- ▶ The problem might not have a solution
- The problem might have many solutions
- ► The solution might be badly defined, i.e. small changes in input lead to large changes in output

- ► The problem might not have a solution
- The problem might have many solutions
- The solution might be badly defined, i.e. small changes in input lead to large changes in output
- Honest mathematicians keep their hands off such problems

▶ Linear means that the map *G* is linear

- ▶ Linear means that the map G is linear
- ▶ If G is linear, the data d can be written as a scalar product in an appropriate space: d = (g, m)

- ▶ Linear means that the map G is linear
- ▶ If G is linear, the data d can be written as a scalar product in an appropriate space: d = (g, m)
- ▶ In discretized form this is d = Gm, where G is a matrix of dimension $N \times M$

- ▶ Linear means that the map G is linear
- ▶ If G is linear, the data d can be written as a scalar product in an appropriate space: d = (g, m)
- ▶ In discretized form this is d = Gm, where G is a matrix of dimension $N \times M$
- ► For linear inverse problems useful theorems can be derived (such as existence of solutions, etc

- ▶ Linear means that the map G is linear
- ▶ If G is linear, the data d can be written as a scalar product in an appropriate space: d = (g, m)
- ▶ In discretized form this is d = Gm, where G is a matrix of dimension $N \times M$
- ► For linear inverse problems useful theorems can be derived (such as existence of solutions, etc
- Non-linear problems are much more difficult. Often the methods involve linearization and iteration.

Outline

General Problem Setting

Formal problem statement

Solution methods

Solution methods 11 / 21

► Example: Finding velocities at the base of a glacier from surface observations

Solution methods 12 / 21

- Example: Finding velocities at the base of a glacier from surface observations
- ▶ The discretized problem has many solutions. How do you choose one?

12 / 21

- Example: Finding velocities at the base of a glacier from surface observations
- ▶ The discretized problem has many solutions. How do you choose one?
- Minimize a property of the solution that can be expressed as a norm

Solution methods 12 / 21

- Example: Finding velocities at the base of a glacier from surface observations
- The discretized problem has many solutions. How do you choose one?
- Minimize a property of the solution that can be expressed as a norm
- ▶ The choice of norm determines the solution (user input or a *prior*)

12 / 21

Generating data to be used in an example

Solution methods 13 / 21

Finding the smallest solution

Solution methods 14 / 21

Finding the smoothest solution

Solution methods 15 / 21

Choice of norm

▶ Both of the previous solutions are exact solutions

Solution methods 16 / 21

Choice of norm

- ▶ Both of the previous solutions are exact solutions
- ► The only difference is the choice of norm that is minimized to select among all possible solutions

Choice of norm

- Both of the previous solutions are exact solutions
- The only difference is the choice of norm that is minimized to select among all possible solutions
- ► For example, the norm $||f||_s = \left(\gamma f^2(a) + \int_a^b (f'(x))^2 dx\right)^{1/2}$ penalizes roughness

16 / 21

► Observations always have errors

- Observations always have errors
- ► Forward models are always imperfect

- Observations always have errors
- Forward models are always imperfect
- ▶ A perfect fit to data is neither expected nor desirable

- Observations always have errors
- ► Forward models are always imperfect
- ► A perfect fit to data is neither expected nor desirable
- ► We find models that fit data within a certain tolerance:

 $\|Gm - d\| \le T$

- Observations always have errors
- Forward models are always imperfect
- ► A perfect fit to data is neither expected nor desirable
- ▶ We find models that fit data within a certain tolerance: $\|Gm d\| \le T$
- ► This is done by minimizing an appropriate functional: $U[m, \lambda] = ||m|| \lambda (T^2 ||\Sigma^{-1}(d Bm)||)$

- Observations always have errors
- Forward models are always imperfect
- A perfect fit to data is neither expected nor desirable
- We find models that fit data within a certain tolerance: || Gm - d || < T
- ▶ This is done by minimizing an appropriate functional: $U[m, \lambda] = ||m|| - \lambda (T^2 - ||\Sigma^{-1}(d - Bm)||)$
- \triangleright λ is a Lagrange multiplier that can be solved for if T is known

17 / 21

Finding a solution within a tolerance

► Information is thought of as probability distribution

- ▶ Information is thought of as probability distribution
- Ex: Observations with random errors $ho(d) \propto \exp{-(d/\sigma)^2}$

- Information is thought of as probability distribution
- Ex: Observations with random errors $ho(d) \propto \exp{-(d/\sigma)^2}$
- One makes a prior assumption about the model parameters $\rho(m)$

- Information is thought of as probability distribution
- Ex: Observations with random errors $\rho(d) \propto \exp{-(d/\sigma)^2}$
- One makes a prior assumption about the model parameters $\rho(m)$
- ▶ Apply Bayes' Theorem: $\rho(m|d) = \frac{\rho(m)\rho(d|m)}{\rho(d)}$

19 / 21

- Information is thought of as probability distribution
- Ex: Observations with random errors $\rho(d) \propto \exp{-(d/\sigma)^2}$
- One makes a prior assumption about the model parameters $\rho(m)$
- ▶ Apply Bayes' Theorem: $\rho(m|d) = \frac{\rho(m)\rho(d|m)}{\rho(d)}$
- The probability of m given d is equal to the prior assumption times the probability of d given m (the forward model) divided by the probability distribution of the data

▶ Make an assumption about the model parameters

- ▶ Make an assumption about the model parameters
- Calculate the misfit to observations

- Make an assumption about the model parameters
- Calculate the misfit to observations
- Calculate a correction to lower the misfit

- Make an assumption about the model parameters
- Calculate the misfit to observations
- Calculate a correction to lower the misfit
- Stop once the data are fit well enough

What is well enough?

The L-curve method

▶ Many methods turn out to be identical on a fundamental level

- ▶ Many methods turn out to be identical on a fundamental level
- ► Each method finds a solution and not the solution

- Many methods turn out to be identical on a fundamental level
- Each method finds a solution and not the solution
- ▶ A solution of the inverse problem is a set of model parameters that is consistent with the forward model and the data within errors

22 / 21

- ▶ Many methods turn out to be identical on a fundamental level
- ► Each method finds a solution and not the solution
- A solution of the inverse problem is a set of model parameters that is consistent with the forward model and the data within errors

► Each method involves a number of assumptions