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Abstract

An ice sheet consists of an unfathomable number of ice crystallites (grains) that typically have

a preferred orientation of the crystalline lattices, termed fabric. At the surface of ice sheets, the

microstructural processes that control the grain structure and fabric evolution are influenced by

climate variables. Layers of firn, in different climate regimes, may have an observable variation

in fabric which can persist deep into the ice sheet; fabric may have ‘memory’ of these past climate

regimes.

To model the evolution of a subtle variation in fabric below the firn-ice transition, we have

developed and released an open-source Fabric Evolution with Recrystallization (FEVOR) model.

FEVOR is an anisotropic stress model that distributes stresses through explicit nearest-neighbor

interaction. The model includes parameterizations of grain growth, rotation recrystallization and

migration recrystallization which account for the major recrystallization processes that affect the

macroscopic grain structure and fabric evolution. Using this model, we explore the evolution of a

subtle variation in near-surface fabric using both constant applied stress and a stress-temperature

history based on data from Taylor Dome, East Antarctica.

Our results show that a subtle fabric variation will be preserved for ≈ 200ka in compressive

stress regimes with temperatures typical of polar ice-sheets. The addition of shear to compressive

stress regimes preserves fabric variations longer than in compression-only regimes because shear

drives a positive feedback between crystal rotation and deformation. We find that temperature

affects how long the fabric variation is preserved, but does not affect the strain-integrated fabric

evolution profile except when crossing the thermal-activation-energy threshold (≈−10◦C). Even

at high temperatures, migration recrystallization does not rid the fabric of its memory under most

conditions. High levels of nearest-neighbor interactions between grains will rid the fabric of its

memory more quickly than low levels of nearest-neighbor interactions.

Because FEVOR does not compute flow, an integrated fabric-flow model is needed to inves-

tigate the flow-fabric feedbacks that arise in ice sheets. Using the open-source Parallel Ice Sheet

Model (PISM) and FEVOR, we develop a combined flow-fabric model (PISM-FEVOR). We pro-

vide the first integrated flow-fabric model that explicitly computes the fabric evolution and in-

cludes all three major recrystallization processes. We show that PISM-FEVOR is able to capture

the flow enhancement due to fabric by modeling a slab-on-slope glacier, initialized with a vari-

ety of fabric profiles. We also show that the entire integrated fabric-flow history affects the final

simulated flow. This provides a further, independent validation of using an integrated fabric-flow

model over a constant enhancement factor in ice-sheet models.
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Chapter 1

Introduction

1.1 Background

Ice sheets are generally defined as a contiguous mass of ice that covers a continental sized area

(> 50000km; Cogley and others, 2011). Currently, the Greenland Ice Sheet in the north polar re-

gion, and the Antarctic Ice sheet in the south polar region, are the only two ice sheets on Earth.

The latter, while contiguous, is often subdivided along the Transantarctic Mountains into the East

Antarctic Ice Sheet and the West Antarctic Ice Sheet. The West Antarctic Ice Sheet is the last re-

maining marine ice sheet where the majority of its bedrock is below sea level (Fretwell and others,

2013). This cause it to behave differently than its eastern counterpart, which is best highlighted by

its possible instability (Mercer, 1978).

Ice sheets are often described as “time machines” because they act as storehouses for paleocli-

mate information (e.g., Jouzel and Masson-Delmotte, 2010; Alley, 2014). This information, usually

obtained from thousands-of-meters long ice cores, can be used for paleoclimate reconstruction

(Alley, 2010), where a “memory” of past climate is extracted from the ice. The oxygen isotope

ratio, δ18O measured in ice cores has been one of the most successful climate proxies used to re-

construct past climate since the pioneering work of Paterson and Clarke (1978). Paterson was able

to reconstruct a mean annual air temperature history to 11000 BP from the δ18O record contained

in ice cores from the Devon Island Ice Cap. He used the air temperature history to predict the ice

temperature distribution within the ice cap and was able to successfully predict the small differ-

ences in temperature observed in upper parts of two boreholes situated 300 m apart. However,

due to the complex nature of the water cycle, and its effect on δ18O, it is important to corroborate

δ18O paleoclimate reconstructions against other known climate proxies (Alley and Cuffey, 2001).

In order to use proxy measurements from an ice-core for paleoclimate reconstruction, the age

of the ice at the particular depth of the proxy measurement must be determined. Because an ice-

sheet is flowing, and flow disturbances can reorder the annual layers of ice, an understanding of

the flow history is required to determine the age of the ice. To accurately model ice flow, processes

spanning many scales must be accounted for (Faria and others, 2009). The crystalline structure of

ice (atomic scale) is hexagonally symmetric (Figure 1.1) and the individual response of a crystallite

(cm scale) to stress is highly anisotropic. In polycrystalline ice (natural ice; m scale), the spatial

distribution of these crystallite or grains is what determines the polycrystalline ice’s bulk mate-

rial properties and overall response to stress. Only when the crystallite or grain orientations are

uniformly distributed in space can the anisotropic behavior of each individual grain be ignored

1



C-Axis 

Basal Planes

Figure 1.1: The crystalline structure of ice. The hexagonal planes are termed the basal
planes, and the optical axis or c-axis is perpendicular to the basal planes.

– giving rise to isotropic behavior in response to stress. Ice with a grain preferred orientation

(fabric) will behave anisotropically in response to stress (Figure 1.2 illustrates how fabric is mea-

sured). The emergent flow of an ice sheet (continental scale) is then the integrated polycrystalline

response to stresses that arise from the overall ice sheet geometry.

Glen (1955) assumed isotropic behavior in his flow law that has gained wide acceptance in

glaciology, as it successfully explained early field observations. Modern field measurements have

shown some discrepancies with flow predicted by Glen’s flow law, many of which can be at-

tributed to the fabric in the ice sheet (e.g., Thorsteinsson and others, 1999), or impurities (e.g., Faria

and others, 2009). Detailed microstructural observations, such as ice-core line-scanners (Svensson

and others, 2005; Faria and others, 2010), optical and electron microscopy, and x-ray diffraction

and tomography (Faria and others, 2010), provide insights into the integrity of ice-core stratigra-

phy.

From the detailed microstructure studies that have been carried out in ice cores for both Antarc-

tic and Greenlandic ice, it has been observed that aspects of climate history are recorded in the

microstructure of ice itself (e.g., Gow and others, 1997; Paterson, 1991; Durand and others, 2007;

Pettit and others, 2011). Paterson (1991) showed that ice-age ice typically consists of smaller grains

and stronger fabric (statistically preferred orientation of the ice crystal lattice) than Holocene ice,

providing the first hint of a direct connection between paleoclimate and microstructure in an ice

sheet. More recently, both thin-section data and sonic-velocity data from Dome C, East Antarctica
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Figure 1.2: Measuring ice crystalline fabrics. a) A point on the unit sphere S2 can be de-
scribed by the angles θ and φ. When measuring fabrics, the crystallite or grain is translated
onto the origin of the unit sphere. Its c-axis will always pass through both the upper and
lower hemispheres – at the blue points for the vertically oriented grain shown. To uniquely
define every possible orientation, only the upper hemisphere of S2 is needed. b) Multiple
grains are measured and their orientations are marked by the blue points. c) The upper
hemisphere can be transformed via an equal-area projection onto a two-dimensional plane,
called a Schmidt plot, so that all orientations can be seen. d-f) Schmidt plots of a single-
maximum, girdle, and isotropic fabric, respectively. The red-lines represent where 1

2S
2 is

intersected by a cone, with a vertex or cone angle (CA), which would contain 90% of the
measured orientations. Though the girdle and isotropic fabric are very different, they are
represented by the same cone angle. g-i) A single-maximum, girdle and isotropic fabric
are represented on the 1

2S
2. The eigenvectors, which point in the direction of the pink

arrows, describe the symmetry of the orientation distribution, while the eigenvalues, rep-
resented by the relative length of the pink arrows, describe how much of the distributions
variance falls along their respective eigenvector. The eigenvalues and eigenvectors of the
orientation tensor depicted are better able to describe these three types of fabrics. This
measurement technique is detailed in the following chapters.

3



0.55

0.50

0.45

0.40

0.35

C
o
n
e
 a

n
g
le

 (
ra

d
ia

n
s
)

0.60

1
8
O

 (
p
e
r 

m
il
) 

 

-40

-45

Time  (ka BP)
100 90 80 70 60 50 40

Figure 1.3: Comparison of δ18O and fabric in the GISP2 ice core. Changes in the fabric
(blue curve; Gow and others, 1997) appear to correlate with the known climate proxy
δ18O (green curve; Grootes and others, 1993).

show an abrupt transition in the ice rheology at 1750m depth which corresponds to a transition

between the warm MIS-5 (marine isotope stage 5) and the cool MIS-6 about 150ka ago (Durand

and others, 2007; Gusmeroli and others, 2012). Observations show that many microstructural

features (impurities, grain size, fabric) generally correlate with climate history (e.g., Durand and

others, 2006). In Figure 1.3, there is an apparent, albeit qualitative, correlation between δ18O and

the fabric measured in the Greenland Ice Sheet Project Two (GISP2) ice core (Grootes and others,

1993; Gow and others, 1997). Fabric itself however, has not yet been used as a climate proxy.

1.2 Objectives

The ultimate goal of this research is to develop ice crystalline fabric as a climate proxy. We hy-

pothesize that because the microstructural processes active in the firn are sensitive to climatic

variables (Alley and others, 1990), layers of firn experiencing different climate regimes may have

observable variations in the fabric which can be preserved. For example, vapor deposition is the

primary method of grain growth in the upper firn and it is anisotropic: deposition will favor either

the basal or prism faces of the ice-crystalline lattice, depending on the temperature (Nelson and

Knight, 1998). Grains with their preferred face parallel to the vapor pressure gradient will grow

more than grains in a less favorable orientation. Because these grains grow at the expense of other

grains (Colbeck, 1983), the well-oriented grains are more likely to remain (Carns and others, 2010,

are developing a model to explore this process). Therefore, variations in texture and fabric in the
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firn may reflect variations in temperature and vapor-pressure gradients (hypothesized by Adams

and Miller, 2003). Consequently, fabric variations may preserve memory of past climate for as

long as they are observable. This is analogous to the climate proxy δ18O; it is the variation in δ18O,

not the particular amount of the oxygen isotope present, that allows us to extract a temperature

history.

There are a number of large benefits to developing fabric as a climate proxy. First, a fabric

proxy would provide another independent proxy to validation of current climate proxies, increas-

ing the robustness of current paleoclimate reconstructions. Second, it may provide a way to in-

crease the spatial resolution of climate reconstructions from the ice sheets. Due in large part to

the unique challenges of working in such remote and extreme environments, drilling an ice core

is often a near decade-long process (Alley, 2010). As such, there have only been a few dozen ice

cores drilled in the polar ice sheets to date, resulting in a rather sparse spatial coverage over the

ice sheets. Because fabric measurements can be taken from the bore hole using a sonic logger

(Gusmeroli and others, 2012), a fast-access mechanical drill, which doesn’t provide an intact core,

can be used without losing the ability to reconstruct paleoclimate (Clow and Koci, 2002). Instead

of a decade long project, a reconstruction could be created within a single year (albeit at a lower

temporal resolution due to sonic loggers averaging data over multiple annual layers). Finally, ice

cores have typically been taken at location that have minimal ice dynamics in order to provide the

least error-prone depth–age analysis needed for paleoclimate reconstruction. Unfortunately, these

locations do not correspond to the most interesting locations for ice microstructure and dynamics

studies, leading to a call in the community for a physically-motivated ice-coring project (Faria and

others, 2009); which has yet to come to fruition. The ability to provide paleoclimate reconstruc-

tions at high spatial scale would allow a physically-motivated coring project (which is likely to

take a decade) to happen without losing the ability to generate new paleoclimate reconstructions

throughout Antarctica and Greenland.

In order for climate history to be inverted from fabric data, a forward model of the ice fab-

ric evolution is needed. The forward model must include the climate-dependent firn processes,

and the subsequent metamorphism of the firn as it turns to ice, as well as the further evolution

of ice within the ice sheet. Because this is a many-scale problem, encompassing processes from

the mesoscopic to the macroscopic and beyond, a complete forward model will necessarily entail

a number of interacting models. These models will need to compute: the climate, the firn mi-

crostructure evolution, the firn densification, the ice microstructure evolution, and the ice flow.

These models can be split into two regimes, the firn regime and the ice regime.
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In this study, we lay the foundation for crystalline fabric as a climate proxy in the ice regime

by:

1. showing that a variation in fabric just below the firn ice transition may be preserved;

2. determining how long, and under what conditions, the variation is preserved in ice-sheet

like conditions;

3. developing a flow-fabric integrated model which can be used to investigate in situ fabric

evolution and cover the ice regime part of the complete forward model.

We develop a fabric-evolution model based largely on the work by Thorsteinsson (2001, 2002)

and include phenomenological descriptions of the dominant recrystallization processes active

within an ice sheet. Because ice cores are typically drilled at ice divides, and most of our in situ

microstructural knowledge is derived from these cores, we apply this model to a fabric variation

experiencing the ice-sheet divide-like conditions. We find that a variation can be preserved in an

ice divide for ≈ 200ka and throughout the depth of an ice-sheet using a simple model of Taylor

Dome, East Antarctica, where migration recrystallization is not active. We present these results in

Chapter 2, which has been published in the Journal of Glaciology as Kennedy and others (2013).

As lead author, I developed the computational model, designed and conducted the experiments,

and drafted the manuscript. Carlos L. Di Prinzio performed the fabric analysis for Taylor Dome,

East Antarctica, and provided a description of the analysis technique. Erin C. Pettit provided

guidance and edited the manuscript.

In Chapter 3, we extend our model to the wide variety of stress and temperature conditions

found throughout the polar ice-sheets, including conditions that result in highly active migration

recrystallization of the ice grains. We find that a fabric variation can be preserved even in the pres-

ence of migration recrystallization, and in the variety of conditions tested. We present these results

in Chapter 3, which has been published in the Journal of Glaciology as Kennedy and Pettit (2015).

As lead author, I developed the computational model, designed and conducted the experiments,

and drafted the manuscript. Erin C. Pettit provided guidance and edited the manuscript.

Since our model developed in Chapter 2 and Chapter 3 is a fabric-evolution model, it does not

compute the ice flow or a stress balance within an ice sheet; these must be prescribed externally.

The new model in Chapter 4, dubbed the Fabric Evolution with Recrystallization (FEVOR) model,

has been licensed and released as an open-source model (FEvoR, https://github.com/FEvoR)

and has been integrated into the open-source Parallel Ice Sheet Model (PISM, http://www.pism-

6



docs.org/). This is the first attempt in the glaciological community to fully integrate a fabric-

evolution model into an ice flow model. In Chapter 4, we describe the PISM-FEVOR integrated

model and present the results of a 2-dimensional slab-on-slope glacier model. A version of Chap-

ter 4 is being prepared for submission to the Journal of Glaciology. As lead author, I developed

FEVOR, guided the development of PISM-FEVOR, designed and conducted the experiments,

and drafted the manuscript. Constantine Khroulev provided the majority of the PISM structure

needed to integrate FEVOR and conduct the experiments, and reviewed the PISM-FEVOR code

base. Erin C. Pettit provided guidance and edited the manuscript. Ed Bueler provided additional

guidance and helpful discussions.

Finally, Chapter 5 describes the key findings presented here and discusses the path forward

for developing ice crystalline fabric as a climate proxy.
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Chapter 2

The evolution of ice crystal fabric in ice sheets and its link to climate history 1

2.1 Abstract

The evolution of preferred crystal-orientation fabrics is strongly sensitive to the initial fabric and

texture. A perturbation in climate can induce variations in fabric and texture in the firn. Feed-

backs between fabric evolution and ice deformation can enhance these variations through time

and depth in an ice sheet. We model the evolution of fabric under vertical uniaxial-compression

and pure-shear regimes typical of ice divides. Using an analytic anisotropic flow law applied to

an aggregate of distinct ice crystals, the model evolves the fabric and includes parameterizations

of crystal growth, polygonization and migration recrystallization. Stress and temperature history

drive the fabric evolution. Using this model, we explore the evolution of a subtle variation in near-

surface fabric using both constant applied stress and a stress–temperature history based on data

from Taylor Dome, East Antarctica. Our model suggests that a subtle variation in fabric caused

by climate perturbations will be preserved through time and depth in an ice sheet. The stress his-

tory and the polygonization rate primarily control the magnitude of the preserved climate signal.

These results offer the possibility of extracting information about past climate directly from ice

fabrics.

2.2 Introduction

An ice crystal is highly anisotropic in its response to stress. An ice sheet is made up of an unfath-

omably large number of ice crystals oriented in a variety of directions (fabric) and of a variety of

shapes and sizes (texture). Only when crystal orientations are uniformly distributed in space can

the anisotropic behavior of each individual crystal be ignored – giving rise to isotropic behavior

in response to stress. However, ice with a preferred orientation of ice crystals (fabric) will behave

anisotropically in response to stress. Glen (1955) assumed isotropic behavior in his flow law that

has gained wide acceptance in glaciology, as it successfully explained early field observations.

Modern field measurements have shown some discrepancies with flow predicted by Glen’s flow

law, many of which can be attributed to the fabric in the ice sheet (e.g. Thorsteinsson and others,

1999).

Paleoclimate reconstruction requires an understanding of flow history in order to relate the

depth of the ice (containing the climate proxy) to its age. Changes in flow due to microstructure,

1Published as Kennedy, J. H., Pettit, E. C., and Di Prinzio, C. L. (2013). The evolution of crystal fabric in ice sheets
and its link to climate history. Journal of Glaciology, 59(214), 357-373. doi:10.3189/2013JoG12J159
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such as enhanced strain from fabric or impurity-enhanced ice flow (Paterson, 1991; Faria and oth-

ers, 2009), need to be accounted for in the ice-flow models used in paleoclimate reconstruction.

Flow disturbances can also reorder the layers of ice, altering the depth–age relation. This reorder-

ing can happen at any scale, and microstructural observations provide insights into the integrity

of ice-core stratigraphy such as ice-core line-scanners (Svensson and others, 2005; Faria and others,

2010), optical and electron microscopy and X-ray diffraction and tomography (Faria and others,

2010). Further, microstructural changes often coincide with changes in ice chemistry. Ice with

high numbers of grain boundaries, triple junctions and micro-inclusions may smear the signal for

entrapped gases and dissolved ions (Faria and others, 2010). Detailed microstructural studies are

needed for paleoclimate reconstruction to ensure the integrity of the depth–age relation, ice-core

strata and the climate proxies. Microstructure itself, however, has not yet been able to reconstruct

a record of past climate changes (it is not a climate proxy).

From the detailed microstructure studies that have been carried out in ice cores for both Antarc-

tic and Greenlandic ice, it is well accepted that ice often develops a preferred crystal orientation

(e.g. Paterson, 1991; Arnaud and others, 2000; Di Prinzio and others, 2005; Durand and others,

2007; Gow and Meese, 2007). Near ice divides, the pattern of crystal orientations, or fabric, is com-

monly a vertically oriented single-maximum or vertical-girdle fabric. The strength of the fabric

typically increases through the depth of an ice sheet. The profile of fabric with depth at a particu-

lar site, however, depends on temperature and strain history. Paterson (1991) showed that Ice Age

ice typically has a smaller crystal size and stronger fabric than Holocene ice, providing the first

hint of a connection between paleoclimate and microstructure. A recent sonic velocity profile of

Dome C, East Antarctica, has shown transitions in the fabric that correlate to glacial–interglacial

transitions through the depth of the ice sheet (Gusmeroli and others, 2012). Furthermore, Pettit

and others (2011) showed a strong correlation between δ18O, a known climate proxy, and fabric

data, implying fabric records climate information. Therefore, fabric may become a climate proxy

in the future.

The variable growth of snow crystals in the atmosphere is unlikely to be preserved in the

snowpack, even though snow-crystal growth is highly dependent on the climate in which it is

growing (Kobayashi, 1967). Once deposited, the crystals break to a small average size (< 1mm2 ;

Benson, 1962) with nearly random orientations, such that their size and orientation do not directly

record atmospheric temperature (Hooke, 2005). After landing, snow crystals begin to grow and

change shape immediately, due to temperature and vapor pressure gradients in the firn (Colbeck,
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1983), and it is here that we expect the climate signal to be imprinted into the ice (Carns and others,

2010).

In polar regions, vapor deposition is the primary method of crystal growth in the upper firn.

The deposition of vapor on a crystal face is anisotropic: deposition will favor either the basal or

prism faces of the snow crystal, depending upon the temperature (Nelson and Knight, 1998). This

process causes crystals with the preferred face parallel to the vapor-pressure gradient to grow

more than crystals in a less favorable orientation. These crystals grow at the expense of other crys-

tals; as average size of crystals increases, the number of crystals decreases (Colbeck, 1983). This

causes the well-oriented crystals to be more likely to remain, while poorly oriented crystals dis-

appear. Therefore, variations in texture and fabric are primarily due to variations in temperature

and vapor-pressure gradient (Carns and others, 2010). Because temperature and vapor-pressure

gradients are a function of accumulation rate, air temperature and wind strength, this firn crystal

evolution process records the climate signal within the firn column. Observations from firn cores

have shown a preferred orientation of crystals in the firn layer (Di Prinzio and others, 2005; Fujita

and others, 2009, 2012).

Climate variables, including temperature, solar radiation, winds and accumulation rate, are

not the only factors that control variations of texture and fabric in the firn. The mechanics of

densification may cause crystals to break apart, and rotate as they are compressed. Because the

underlying physics in this region is poorly understood and much beyond the scope of this paper,

we assume here that these climate variables affect the initial orientation and size of the ice crystals

due to changes in the firn air temperature, vapor-pressure gradient and accumulation rate. The

magnitude and rate of change of these variables during a climate transition will determine how

pronounced the initial fabric variation is.

The aim of this paper is to determine how well climate information, as recorded in the ini-

tial fabric, may be preserved throughout the depth of an ice sheet. We model the evolution of a

climate-induced fabric variation below the firn–ice transition. The fabric is evolved in response to

a stress–time profile in which the stress is either constant or varies in a similar way to a real ice

divide. Specifically, our model follows a small block of ice as it travels along a particle path. The

block of ice is made up of three layers of 8000 crystals or grains (each grain is considered to be a

single crystal, and the terms could be used interchangeably throughout this paper; we will use the

term crystal because it is the term most often associated with fabric). The model does not include

the larger-scale feedbacks among ice with different rheological properties that may alter the stress
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history along a particle path. Our goal here is to isolate the effects of crystal-scale processes on the

evolution of fabric under uniaxial compression and pure shear.

In the following sections, we show which stress–temperature conditions can lead to a preser-

vation of the fabric variation through tens of thousands of years and deep in the ice sheet divide.

First, we provide a brief background on fabric evolution and the relevant crystal processes. We

then describe our model in detail and introduce a new orientation distribution function (ODF) to

describe the orientations of crystals. In the remaining sections, we describe and discuss the results

of our experiments with both constant applied stresses and stress–time profiles from an ice divide.

2.3 Background

The deformation of a single ice crystal in response to stress is strongly anisotropic. Crystals shear

easily along the slip systems in their basal planes, much like a deck of cards, while shear on other

slip systems is nearly two orders of magnitude harder (Duval and others, 1983). This leads to

crystals responding to applied stress by elongating in the direction of the tensile stress and rotating

until its basal planes are perpendicular to the compressive stress (Azuma and Higashi, 1985; Alley,

1992; Van der Veen and Whillians, 1994). In polycrystalline ice (hereafter referred to as ice), the

orientation of a crystal is defined by the crystallographic axis (c-axis) that is perpendicular to the

basal plane. Ice with a random orientation of c-axes (uniform over the surface of the sphere)

is considered isotropic, while ice with a preferred orientation of c-axes is anisotropic. Strongly

anisotropic ice in simple shear can deform up to an order of magnitude faster than isotropic ice

(Azuma, 1994; Castelnau and others, 1996; Thorsteinsson, 2001). Ice at depth in an ice sheet tends

to have crystals with c-axes aligned vertically (e.g. Alley, 1992), so its flow is significantly affected

by crystal fabric.

The state of stress in the central regions of an ice sheet is dominated by vertical compression

combined with horizontal shear that increases in magnitude with depth and distance from the

divide. Under this stress state, the crystals tend to align with basal planes oriented horizontally

and their c-axes oriented vertically as they move deeper in the ice sheet through time; strengthen-

ing the fabric with depth. The rate at which crystals rotate (how quickly fabric evolves) depends

primarily on strain rate, which is a function of temperature, impurity content, crystal orienta-

tion (Weerman, 1973; Budd and Jacka, 1989; Paterson, 1991), and neighboring crystal interactions

(Thorsteinsson, 2002).

The evolution of fabric is significantly affected by three additional processes: normal crystal

(grain) growth, polygonization and migration recrystallization (Alley, 1992). In solid ice, normal
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crystal (grain) growth occurs through migration of crystal boundaries driven by energy differ-

ences across the boundary defined by boundary curvature, intrinsic properties (e.g. temperature,

thickness, diffusivity of water molecules), and extrinsic material (e.g. impurities, bubbles). Al-

most every experimental and theoretical treatment of the intrinsic growth rate of an ice crystal

describes growth rate by a parabolic growth law (Alley and others, 1986). The crystal diameter, D,

increases with time as

D2 = K(t− t0) + D0
2 , (2.1)

where K is the crystal-growth factor, t is time, t0 is the time of the last recrystallization and D0 is

the crystal diameter at time t0. The crystal-growth factor, K, is

K = K0 exp
(
− Q

R T

)
, (2.2)

where K0 is a constant that depends on the intrinsic properties of the crystal boundaries, Q is the

thermal activation energy, R is the gas constant and T is the temperature. However, extrinsic

materials reduce the rate of boundary migration and can be described by a drag force on the

boundary (Alley and others, 1986). This drag effectively reduces the crystal-growth factor K.

Normal crystal growth is active throughout the depth of an ice sheet. Once the ice starts de-

forming, crystal-boundary migration is a function of strain energy and grain-boundary energy.

In the special case of the crystals on either side of the boundary having the same strain energy,

Eqn (2.1) will describe the crystal growth in deforming ice. Even though the crystals continue

growing at depth, a stable crystal size is typically reached (below a certain depth) because polygo-

nization counteracts crystal growth. Polygonization creates new crystal boundaries within large

ice crystals, effectively dividing the crystal in two. Large crystals can become highly strained

and experience differential stress, which is relieved by the organization of dislocations into a sub-

crystal boundary (Alley, 1992). De La Chapelle and others (1998) determined that the minimum

dislocation density needed to form a sub-crystal boundary is, ρp = 5.4×1010 m−2.

Because polygonization depends upon a minimum dislocation density being reached, the rate

of polygonization can be indirectly described through the rate of change of the dislocation density.

Dislocation density changes due to two dominate processes: it increases due to work hardening

and decreases due to the absorption of dislocations at the crystal boundary (Miguel and others,

2001). Therefore, the change in the dislocation density can be described as
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∂ρ

∂t
=
||ε̇̇ε̇ε||
bD
−αρ

K
D2 , (2.3)

where the first term on the right-hand side describes work hardening: ||ε̇̇ε̇ε|| is second invariant of

the strain rate tensor, b is the length of the Burgers vectors and D is the crystal diameter (Mon-

tagnat and Duval, 2000). The second term describes the absorption of dislocations at the crystal

boundaries: α is a constant and K is the crystal-growth factor.

Through most of the depth of an ice sheet, the rate of fabric evolution is a balance between

crystal growth, polygonization and crystal rotation. However, migration recrystallization dom-

inates fabric evolution at high temperatures (typically above approximately −10◦C; Duval and

Castelnau, 1995). Migration recrystallization occurs when the stored strain energy (due to dislo-

cations) in a crystal is greater than the crystal-boundary energy of a new strain-free crystal. The

new strain-free crystal is nucleated and rapidly grows at the expense of the old crystal (Duval and

Castelnau, 1995). The stored energy due to a dislocation density, Ed, can be estimated as

Ed ' µρGb2 ln
(

Re

b

)
, (2.4)

where G is the shear modulus, µ is a constant and Re is the mean average of the dislocation strain

field range (Thorsteinsson, 2002). The energy associated with crystal boundaries, Ec, is

Ec =
3γg

D
, (2.5)

where γg is the energy per area on the boundary (for high-angle boundaries). When Ed > Ec it is

energetically favorable to nucleate a new crystal, which quickly grows to a diameter that scales

with the effective stress (e.g., Shimizu, 1998). The crystal that grows rapidly will form in the most

energetically favorable position: about halfway between the compressional and tensional axes,

which maximizes the resolved shear stress on the basal planes causing them to deform easily

(Alley, 1992). For uniaxial compression or pure shear, for example, this is 45◦ from the axis of

compression. The grains are initially strain-free, and will have a much lower strain energy than the

surrounding grains, allowing them to grow. As the new crystals grow preferentially at orientations

favorable for the bulk deformation, the fabric can change significantly; in uniaxial compression, a

strong vertical fabric will become a weaker small-circle girdle fabric (Budd and Jacka, 1989).
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2.4 The model

Many models have been proposed to incorporate the effect of fabric into ice-sheet models. Gagliar-

dini and others (2009) classify the variety of anisotropic polar ice models into four categories:

phenomenological, full-field, homogenization and topological models.

Phenomenological models are large-scale ice-flow models that use a macroscopic formulation

of the anisotropy of ice (e.g., Morland, 2002; Gillet-Chaulet and others, 2005; Placidi and others,

2009). The primary question these models answer is how the anisotropy of ice affects the flow

of a glacier or ice sheet. These models are designed for flow studies; computational efficiency is

paramount and the anisotropy of ice is parameterized and limited to a few special cases. These

models typically represent large areas (m2 to km2) for each representative sample of ice and fab-

rics are not passed along flowlines. This entire class of model is unsuitable for our application

because we are interested in the evolution of small-scale (cm2 to m2) subtle variations in fabrics

as they move along their flowlines.

At the other end of the scale lie the full-field models. These models solve the Stokes equations

by decomposing each crystal into many elements, allowing the stress and strain-rate heterogeneity

to be inferred at the microscopic scale (e.g., Meyssonnier and Philip, 2000; Lebensohn and others,

2004). These models are concerned with the microscopic processes within the ice crystal and at

the boundaries of the ice crystal. They are generally two-dimensional models and become increas-

ingly computationally difficult as the number of crystals is increased, limiting their application to

a small number of crystals. These models are unsuitable for our application because the limited

number of crystals does not allow for a statistically significant description of fabric on the scale of

an ice sheet.

Homogenization models (also called micro–macro models) are used to derive the polycrys-

talline behavior of the ice from the behavior of single crystals (e.g., Lliboutry, 1993; Castelnau and

Duval, 1994; Van der Veen and Whillians, 1994; Gördert, 2003; Gillet-Chaulet and others, 2006).

These models compute the macroscopic (bulk) behavior by averaging over the microscopic (crys-

tal) behavior. Generally these models are primarily focused on the evolution of fabric and de-

scribe the fabric as either a discrete or continuous orientation distribution. The topological mod-

els (e.g., Azuma, 1994; Thorsteinsson, 2002) are a sub-class of the homogenization models that in-

clude topological information by taking into account neighbor influences; a crystal surrounded by

‘hard’ crystals will be less likely to deform regardless of its orientation. Sarma and Dawson (1996)

showed that nearest-neighbor interactions are essential to determining the single-crystal strain

given a bulk equivalent strain. Thorsteinsson’s (2002) model is the only topological model to in-
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Neighbor crystals 

Crystal 

Figure 2.1: The polycrystal structure. Left: an example of a polycrystalline cuboid with
three distinct fabric layers; the top layer is white, the middle layer light gray and the bot-
tom layer dark gray. Each small cube indicates one crystal and each layer has 4×4×4 = 64
crystals. The three-layered cuboid in our model has 20× 20× 20 = 8000 crystals in each
layer. Right: an illustration of the crystal packing where each crystal (gray) has six neigh-
boring crystals (white).

corporate crystal growth, rotation and dynamic recrystallization into the fabric evolution. Since

the recrystallization processes significantly affects the evolution of crystal fabric (Alley, 1992), we

use the model developed by Thorsteinsson (2001, 2002) to study the fabric evolution throughout

the depth of an ice sheet near a divide. It is important to note that this model is a polycrystal

model that solves for fabric evolution and behavior, not a flow model. This model alone will not

capture the deformation–fabric feedbacks due to the redistribution of stress (as a result of spa-

tial variations in rheology) within the ice sheet. However, the model could be integrated into an

ice-sheet flow model in order to capture this feedback.

The model uses a representative distribution of N individual ice crystals to calculate the bulk

response of the ice to stress by averaging over the crystals. The crystals are arranged on a regular

cuboidal grid (Figure 2.1), where each crystal has six nearest neighbors. The crystals, however, are

considered to evolve independently of each other and are embedded in an ice matrix consisting of

small crystals, which accommodate the crystal-boundary migration and act as seeds for migration

recrystallization (Thorsteinsson, 2002). Because these crystals are small, they do not contribute

significantly to the bulk deformation of the ice. In the case of nearest-neighbor interactions, the

crystals are only able to feel that there is a hard or soft crystal nearby and the interaction only

affects the crystals’ resolved shear stress (Eqn (2.10), below). Each layer in the cuboid can be given

a sub-distribution of crystals with its own fabric, and the response of each layer to an applied

stress can be calculated through time.
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Figure 2.2: Flow chart of the model. The model is initialized with fabric data, deviatoric
stress and temperature. For each time-step, strain rates and velocity gradients are calcu-
lated, dynamic recrystallization processes are applied to the fabric and then the crystals
are rotated to calculate new fabric data. The new fabric data as well as new stresses and
temperatures are fed back into the model to start the next time-step.

Each crystal in the distribution has an associated orientation given by the co-latitude, θ, and az-

imuth, φ, as well as an associated spherical size of diameter D and dislocation density ρ. The model

takes in an initial crystal distribution, stress and temperature and evolves the crystals through

uniform steps in time or strain; Figure 2.2 outlines the model process. First, the model creates an

initial crystal distribution by the method described in the next subsection. The model then applies

a stress to the crystal distribution and calculates the individual crystal strain rates and velocity

gradients using the analytic flow law developed by Thorsteinsson (2001, 2002). Next, it checks

the recrystallization conditions (outlined below) and then rotates the crystals. After each time- or

strain-step, the model outputs the new distribution of crystals, the bulk strain and the number and

type of recrystallization events. This new distribution of crystals is then fed back into the model

for the next time-step along with the new stress and temperature.

In this model, stress is an input; the stress, therefore, must be determined outside the model.
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2.4.1 Crystal physics

Ice crystals rotate as a result of the velocity gradient experienced. The velocity gradient is a result

of the internal stresses experienced by the ice sheet, and these stresses lie somewhere between

two end members: uniform stress and uniform strain rates. Due to the strong crystal anisotropy,

the uniform-stress assumption has been shown to be well adapted to describing polycrystalline

ice (Castelnau and others, 1996). Therefore, we apply a uniform stress to each crystal in the dis-

tribution. We restrict the deformation of the crystal to the basal plane; therefore, the crystal only

responds to the components of stress that are in the basal plane (termed the resolved shear stress;

RSS). The Schmidt tensor, S, describes the orientation of the crystal,~c, relative to the slip directions

and has the form

S(s) =~b (s)⊗~c . (2.6)

where (s) refers to the slip system,~b (s) is the direction (Burgers vector) of the slip system and ⊗ is

the vector direct (dyadic) product. Then the RSS, τ(s), on a slip system is

τ
(s) = S(s) : σσσ , (2.7)

where σσσ is the deviatoric stress tensor for the stress applied to the fabric and S(s) : σσσ = S(s)
kl σkl sum-

ming over repeated indexes. The magnitude of the RSS, T , can then be calculated as

T =

∣∣∣∣∣∑(s)
τ

(s)~b(s)

∣∣∣∣∣ . (2.8)

Using the analytic flow law (Thorsteinsson, 2001, 2002) the velocity gradient of a crystal, Lc, in

response to a stress is

Lc = βA ∑
s

S(s)|E c
τ

(s)|n−1(E c
τ

(s)) , (2.9)

where β is a constant, A is the flow parameter from Glen’s flow law (Paterson, 1994, p. 97), E c is

the local softness parameter due to explicit nearest-neighbor interactions (NNI) of the ice crystals

and n is the exponent in Glen’s flow law (Glen, 1955). The local softness parameter averages the

magnitude of the RSS on a crystal’s six nearest neighbors relative to the magnitude of the RSS it is

experiencing, T 0:
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E c =
1

ζ + 6ξ

(
ζ + ξ

6

∑
i=1

T i

T 0

)
, (2.10)

where ζ is the relative contribution of the center crystal, ξ is the relative contribution of each

neighbor and i = 0 refers to the center crystal and i = 1, ...,6 refers to each of the six nearest neigh-

bors (Figure 2.1). Because the RSS can be zero, there is a specified roof for the maximum value

of E c. Setting [ζ,ξ] to [1,0] in Eqn (2.10) is equivalent to the homogeneous stress assumption

where, there is no NNI. Changing the values of [ζ,ξ] modifies the homogeneous-stress (toward

the homogeneous-strain) assumption by redistributing the stress through explicit NNI. Using the

values [6,1] means the center crystal contributes as much as all the neighbors together, and [1,1]

means the center crystal and all the neighbors contribute equally.

Finally, the strain rate of a single crystal, ε̇̇ε̇εc, is

ε̇̇ε̇ε
c =

1
2

[
Lc + (Lc)T

]
, (2.11)

where ( )T indicates the matrix transpose.

2.4.2 Rotating crystals

In each time-step, the crystals are rotated from an orientation,~c, to a new orientation,~c ′. If the

surrounding ice is fixed, each crystal rotates as it deforms according to the standard continuum

mechanics rotation rate tensor:

Ω̇̇Ω̇Ω
p =

1
2

[
Lc− (Lc)T

]
, (2.12)

where Ω̇̇Ω̇Ωp is the rotation rate of a single crystal and Lc is the velocity gradient of a crystal in

response to stress from Eqn (2.9). If the surrounding ice is rotating within the frame of reference,

however, the model calculates a relative crystal rotation rate:

Ω̇̇Ω̇Ω
∗ = Ω̇̇Ω̇Ω

b− Ω̇̇Ω̇Ω
p , (2.13)

where Ω̇̇Ω̇Ωb is the bulk rotation rate of the modeled ice in response to stress. The bulk rotation rate

is

Ω̇̇Ω̇Ω
b =

1
2

[
Lm− (Lm)T

]
+ Ω̇̇Ω̇Ω

d , (2.14)
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where Lm is the bulk velocity gradient of the modeled ice (calculating bulk properties is discussed

in the next subsection), and Ω̇̇Ω̇Ωd is the rotation rate necessary to add to the modeled bulk rota-

tion rate in order to satisfy the boundary conditions. For example, irrotational deformations (e.g.

uniaxial compression, pure shear) should have no bulk rotation of the ice (Ω̇̇Ω̇Ωb = 0), making

Ω̇̇Ω̇Ω
d =−1

2

[
Lm− (Lm)T

]
. (2.15)

Therefore, the new orientation of the crystal is

~c ′ = (I + tΩ̇̇Ω̇Ω∗)~c (2.16)

where t is the time-step.

2.4.3 Bulk properties

The bulk properties are calculated by averaging the single-crystal properties and will be influ-

enced more by the larger crystals than the smaller crystals. We calculate the volume of a crystal

from the its diameter, D, and use its volume fraction, f , as a statistical weight for the calculation

of the bulk properties (Gagliardini and others, 2004). Any bulk property, Y, of a single-crystal

property, Yc, is then

Y =
N

∑
n=1

fnYc
n , (2.17)

where

fn =
D3

n

∑
N
m=1 D3

m
. (2.18)

Therefore, the modeled bulk velocity gradient is

Lm =
N

∑
n=1

fnLc
n , (2.19)

where N is the number of crystals in the fabric. Likewise, the bulk strain rate is

ε̇̇ε̇ε =
N

∑
n=1

fnε̇̇ε̇ε
c
n . (2.20)
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Table 2.1: Values of the parameters used in the model.

Parameter Value Equation Source
Initial crystal
diameter, D0

1.5mm Eqn (2.1) Benson (1962)

Crystal-growth
constant, K0

8.2×10−9 m2 s−1 Eqn (2.2) Alley and others (1986);
Thorsteinsson (2002)

Thermal activation
energy, Q

40KJmol−1 Eqn (2.2) Alley and others (1986);
Thorsteinsson (2002)

Dislocation
absorption constant, α

1 Eqn (2.3) De La Chapelle and others (1998);
Montagnat and Duval (2000)

Dislocation energy
constant, µ

0.035 Eqn (2.4) Mohamed and Bacroix (2000);
Thorsteinsson (2002)

Dislocation strain field
range, Re

1√
ρ

Eqn (2.4) Mohamed and Bacroix (2000)

Crystal boundary
energy, γg

0.065Jm−2 Eqn (2.5) Ketcham and Hobbs (1969)

Flow law constant, β 630 Eqn (2.9) Thorsteinsson (2001)
Polygonization ratio,
δ

0.065 Thorsteinsson (2002)

Polygonization
orientation change, ∆θ

5◦ Thorsteinsson (2002)

Initial dislocation
density, ρ0

1010 m−2 De La Chapelle and others (1998)

2.4.4 Crystal processes

The crystals are additionally affected by normal crystal growth and the recrystallization processes

of polygonization and migration recrystallization. Normal crystal growth is implemented by

growing the diameter of the crystal, D, according to Eqn (2.1). Though the ice is deforming,

we assume that the small crystals that surround the modeled ice crystal have an average strain

energy comparable with the modeled crystal, such that the strain energy does not add to the

grain-boundary migration rate. The dislocation density of the crystal also grows, according to

Eqn (2.3). The recrystallization processes are outlined below. Once a crystal has undergone a

recrystallization event, it will start to evolve again according to Eqn (2.1) and (2.3).

Polygonization

We model polygonization using a proxy for differential stress on a crystal (Thorsteinsson, 2002).

Crystals that have a small component of shear stress resolved on to the basal plane (RSS) will likely

be experiencing a differential stress from their neighboring crystals which are deforming. If the

23



ratio of the magnitude of the RSS, T , to the second invariant of the applied stress, ||σσσ|| is less than

a given value (T /||σσσ|| < δ) and the dislocation density, ρ, in the crystal sufficient to form a sub-

crystal wall ( ρ > ρp), then the crystal can polygonize. When a crystal polygonizes, the orientation

is changed by an angle, ∆θ, in a direction that increases the RSS, the crystal size is halved and

the dislocation density is reduced by ρp. Polygonization tends to slow the development of fabric,

because crystals that are oriented very close to the preferred orientation (small RSS) of the fabric

will polygonize preferentially by the selection criteria (weakening the fabric).

Migration recrystallization

We model migration recrystallization by immediately nucleating a new crystal once the disloca-

tion energy, Ed, is greater than the boundary energy, Ec (Eqn (2.4) and (2.5)). The old crystal is

replaced with the new ‘strain-free’ crystal, with dislocation density ρ0 and a diameter that scales

with the effective stress, D ∼ (σklσkl/2)−2/3. The rapid crystal-boundary migration is assumed to

be fast enough to grow to a diameter D within a single time step. The ‘strain-free’ crystal is given

the ‘softest’ orientation, or orientation with the highest RSS, of a random set of orientations in the

applied stress state (Thorsteinsson, 2002). In uniaxial compression, this is close to the small circle

45◦ off the compression axis.

Model parameters

Table 2.1 lists each parameter used, which section and equation it can be found in, and the relevant

reference(s).

2.5 Generating initial crystal distributions

To generate our initial fabrics, we use a finite number of crystals randomly selected from an orien-

tation distribution function (ODF) to represent the ice we are modeling. Each layer of our cuboid

(as shown in Figure 2.1) can be given a unique ODF and thereby a unique fabric. The layers are

then put together to form our initial crystal distribution.

Orientation distribution functions provide a continuous description of the volume fraction

of ice crystals in a certain orientation. This reduces to the relative number of ice crystals in an

orientation if every crystal has the same volume. Because thin-section measurements from ice

cores provide only a limited snapshot of the ODF in situ, a general ODF is needed to describe the

variety of fabrics observed in ice sheets.
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It is important to remember that ice crystals are axially symmetric; they have no inherent ‘up’

or ‘down’ direction. Therefore, the orientation of a single ice crystal can equally be described by

two unit vectors pointing in opposite directions, ~c and −~c, corresponding to the two points on

opposite sides of the unit sphere where the axis passes through. Because of this symmetry, the

space of all possible orientations can be reduced to the upper hemisphere of the unit circle. Every

axis will have one end pass through a point on the upper hemisphere, while the other end will

pass through a corresponding point (reflected through the origin) on the lower hemisphere. Thus

an ODF that preserves this axial symmetry can be defined on the upper hemisphere alone (the

unit vector space is restricted to the upper hemisphere). Defined as such, the ODF, p, must be

normalized such that the total volume fraction is equal to 1, or

1 =
1

2π

∮
S/2

p(~c)d~c , (2.21)

where S/2 is the surface of the upper hemisphere of the unit sphere, S. Alternately, an ODF, P,

could be defined over the whole unit sphere (the unit vector space is unrestricted) such that both

ends of the axis carry half the probability of finding a crystal in that orientation (P(~c) = P(−~c)).

Again P must be normalized, such that the total volume fraction is equal to 1, or

1 =
1

4π

∮
S

P(~c)d~c . (2.22)

It is mathematically equivalent to use either a restricted or unrestricted distribution and, thus far,

every ODF proposed in the glaciology literature has been a restricted distribution (Gagliardini

and others, 2009).

We use an unrestricted distribution called the Watson distribution, the simplest well-known

axial distribution in directional statistics (Fisher and others, 1987; Mardia and Jupp, 2000). The

Watson distribution (Watson, 1965) is defined over the whole unit sphere as

w(~c) = a−1
k exp[−k(~η T~c)2] , (2.23)

where k ∈ [−∞,∞] is the concentration parameter,~η is the principal axis of the distribution and ak

is the normalizing constant. If we set u =~η T~c, the normalizing constant is

ak = 2
∫ 1

0
exp(−ku2)du . (2.24)
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The Watson Distribution preserves axial symmetry, w(~c) = w(−~c) and is rotational symmetric around

its principal axis,~η. If the principal axis is pointing vertically,~η = [0,0,1], the Watson distribution

can be written as

w(θ,φ) = a−1
k exp[−kcos2(θ)] , (2.25)

where θ and φ are the co-latitude and azimuth angles.

The Watson distribution describes single-maximum fabrics when k < 0, equatorial-girdle fab-

rics when k > 0, and reduces to the uniform (isotropic) distribution when k = 0. Fortunately, these

are the most common types of fabrics observed in ice cores (Paterson, 1994). Additionally, if there

is a sample of N observations of axis positions, the Watson distribution’s concentration parameter

and principal axis can be determined from the eigenvalues and vectors of ∑
N
n=1 fn~cn⊗ ~cn, the fa-

miliar orientation tensor used to analyze ice-core thin sections (Woodcock, 1977; Gagliardini and

others, 2004). Therefore, we can connect the concentration parameter and the principal axis of the

Watson distribution to an observed fabric (described in the next subsection).

Although unrestricted distributions have not been used previously in the glaciology literature,

the Watson distribution is closely related to the Fisher distribution, the best known vectorial (not

axial) distribution in the field of directional statistics (Fisher and others, 1987; Mardia and Jupp,

2000). Lliboutry (1993) proposed a restricted form of the Fisher distribution to use as an ODF in

glaciology, but abandoned it due to the computational difficulties. Later, Gagliardini and others

(2009) showed that for Dome C, the restricted Fisher distribution best fit the observed distribution

of crystals, as compared to the other ODFs used in the glaciology literature, even though it has

never been applied in glaciology. The Fisher distribution, F , is defined as

F (~c) = f−1
κ exp[κ~η T~c] (2.26)

where f−1
κ is a normalizing constant, κ ∈ [0,∞] is the concentration parameter, ~η is the principal

axis of the distribution and~c is a crystal orientation (unit) vector (Fisher, 1953). When the principal

axis,~η, is vertical, the density of the distribution reduces to exp(κcos(θ)), where θ is the co-latitude

angle. The Fisher distribution describes single-maximum fabrics when κ > 0, and reduces to the

uniform (isotropic) distribution when κ = 0. Unfortunately, the Fisher distribution cannot describe

girdle fabrics and it is not axially symmetric ( F (~c) 6= F (−~c)) so must be used in the restricted

unit vector space for ice crystals. Watson (1982) showed that an axial form of the (unrestricted)

Fisher distribution can be created by replacing θ with 2θ, thereby creating a bipolar distribution.
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By noticing that exp[cos(2θ)] ∝ exp[cos2(θ)] we arrive back at the Watson distribution, which, by

choosing an appropriate k, can be used in place of Lliboutry’s restricted Fisher distribution, with

the added benefit of being able to describe girdle fabrics.

2.5.1 Orientation tensor

The orientation tensor, built from the orientation of each crystal in a polycrystal, is used to de-

termine the strength of the fabric in the ice (Woodcock, 1977; Gagliardini and others, 2004). The

orientation tensor is calculated from a polycrystal of N crystals as

A =
N

∑
n=1

fn~cn⊗~cn , (2.27)

where fn is the crystal’s volume fraction (Eqn (2.17)). The eigenvalues (ei for i = 1,2,3) and eigen-

vectors (~vi) are then calculated from A. The eigenvalues are said to describe the spatial strength

of the fabric and the eigenvectors form the best material symmetry basis. Alternately, the eigen-

value, ei, can be considered the fractional variance of the distribution along the eigenvector, ~vi.

The eigenvalues are arbitrarily sorted, such that e1 > e2 > e3, and ~v1 gives the direction of the

‘strongest’ fabric. An axially symmetric single-maximum distribution will have eigenvalues such

that e1 > e2 = e3 and the principal axis will be ~v1; the points will all be clustered around ~v1 (most

of the variance is along ~v1). While an axially symmetric equatorial-girdle distribution will have

eigenvalues such that e1 = e2 > e3, the points will be clustered around the equator of a sphere with

a pole axis ~v3 (most of the variance is along both ~v1 and ~v2).

If our crystals are considered a random sample of a Watson distribution, then the eigenvalues

and eigenvectors of the orientation tensor allow us to estimate the concentration parameter, k, of

the Watson distribution (Watson, 1965). Fisher and others (1987, p. 176), and Mardia and Jupp

(2000, p. 202) show that the maximum-likelihood estimate (MLE) of the concentration parameter,

k, is the solution of

D(z) =
∫ 1

0 u2 exp(−zu2)du∫ 1
0 exp(−zu2)du

, (2.28)

where u is the same as in Eqn (2.24); D(z) = e1 and z = k for a bipolar distribution and D(z) = e3

and z =−k for a equatorial girdle distribution. Both Fisher and others (1987) and Mardia and Jupp

(2000) give methods to reasonably approximate the solution to Eqn (2.28). Further, we know the

principal axis of the distributions will be
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~η = ~v1 for a bipolar distribution

~η = ~v3 for an equatorial-girdle distribution,

from the eigenvectors of the orientation tensor. The Watson distribution can thus be calculated to

have a fabric that is analogous to a thin section’s fabric.

Taking the Watson distribution to be our general ODF has a few distinct advantages over other

proposed ODFs. The Watson distribution is inherently axial, like our ice crystals, and it can be

generated directly from the observed properties of a thin section. It describes single-maximum,

equatorial-girdle and isotropic fabrics, the most common observed in ice cores. Further, it is a

well-known distribution in directional statistics (Fisher and others, 1987; Mardia and Jupp, 2000).

This allows use to use the statistical tools, such as MLE, developed in a variety of disciplines, from

nuclear magnetic resonance imaging (Cook and others, 2004) to the movement of robots (Palmer

and Fagg, 2009) and many others. (See Fisher and others (1987) and Mardia and Jupp (2000) for

more information about the statistical tools that have been developed for this and other spherical

distributions.)

We generate our initial fabrics for our model through random sampling of the Watson dis-

tribution (Ulrich, 1984; Li and Wong, 1993; Wood, 1994). Each crystal is assumed to have the

same crystal size, and therefore the Watson distribution describes the relative fraction of crystals

in a particular orientation. We model the distributions on the fabrics observed at Taylor Dome,

Antarctica (as described below).

2.6 Constant stress experiments

In order to determine whether a subtle variation in fabric could be preserved over time, we model

the application of constant stress on a cuboid that has three 8000-crystal layers, where the middle

layer is initialized with a different fabric than the top and bottom layers. The initial fabric for the

top and bottom layers is generated with a concentration parameter for the Watson distribution of

k =−2.0 (e1 = 0.538) while the middle layer has a concentration parameter of k =−2.4 (e1 = 0.567).

These concentration parameters are chosen to correspond with fabrics at 100m depth in Taylor

Dome (described below). A contoured Schmidt plot of the fabrics is shown in Figure 2.3. At each

time-step, a constant temperature, T, and stress, σσσ, is applied to the fabric. We chose our tem-

perature to be T = −30◦C: the approximate average temperature of the Antarctic ice sheet. This

temperature is well below our cut-off temperature for migration recrystallization, which is there-
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Table 2.2: Summary of the run setup of our constant-stress experiments.

Run σσσ NNI [ζ,ξ] σ

bar
1 Uniaxial compression None [1,0] −0.1
2 −0.4
3 Mild [6,1] −0.1
4 −0.4
5 Full [1,1] −0.1
6 −0.4
7 Pure shear None [1,0] −0.1
8 −0.4
9 Mild [6,1] −0.1
10 −0.4
11 Full [1,1] −0.1
12 −0.4

fore not active in the results presented here. We apply the stress states of uniaxial compression

and pure shear to our fabric. The deviatoric stress tensor for uniaxial compression has the form

σσσ =


1
2 σ 0 0

0 1
2 σ 0

0 0 −σ

 , (2.29)

and the deviatoric stress tensor for pure shear has the form

σσσ =


σ 0 0

0 0 0

0 0 −σ

 . (2.30)

We use σ values 0.1 and 0.4bar to provide a lower and upper bound on the characteristic deviatoric

stresses typically seen in ice sheets (Pettit and Waddington, 2003). The model calculates a strain

rate at a time-step, and then the fabric is evolved for the amount of time required to achieve a

strain-step of 0.001, until a total strain of 0.35 is reached. After 0.35 strain, the time-step necessary

for a 0.001 strain-step has increased by over two orders of magnitude, due to stress hardening, and

preliminary model runs suggest that the separation in eigenvalues between the layers will drop

below 0.01 for most of our experiments. The nearest-neighbor interaction parameters (Eqn (2.10))

were varied for different model runs. Table 2.2 shows the model set-up for each run.
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Σ

k = -2.0, N = 8 k = -2.4, N = 8

k = -2.0, N = 8000

(e1 = 0.538)

k = -2.4, N = 8000

(e1 = 0.567)

Figure 2.3: Contoured Schmidt plot of the initial fabrics for both the constant stress and
Taylor Dome experiments. The fabrics are contoured at levels of 0,2Σ, ...,10Σ where Σ is
the standard deviation of the density of crystals from the expected density for isotropic
ice (Kamb, 1959). The top two plots are contour plots of the continuous Watson distri-
bution (an infinite number of crystals) with concentration parameters k = −2.0 (left) and
k = −2.4 (right). Two random 8000 crystal fabrics were generated from these Watson dis-
tributions, as shown in bottom two plots. The fabric generated from the k = −2.0 and
k = −2.4 distributions have eigenvalues of e1 = 0.538 and e1 = 0.567, respectively. The con-
centration parameter of k =−2.4 is consistent with a fabric at 100m depth in Taylor Dome,
and the concentration parameter of k = −2.0 was picked to make a fabric that is slightly
more isotropic.
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Run 2: No NNI, high stress
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Run 3: Mild NNI, low stress
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Run 4: Mild NNI, high stress
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Run 5: Full NNI,low stress
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Run 6: Full NNI, high stress
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Run 1: No NNI, low stress

Figure 2.4: The uniaxial-compression runs, 1-6 (Table 2.2). The top row shows the low-
stress runs and the bottom row the high-stress runs. The left column shows no nearest-
neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the middle column shows mild nearest-
neighbor interaction ([ζ,ξ] = [6,1]) and the right column shows full nearest-neighbor inter-
action ([ζ,ξ] = [1,1]). For each run, the top plot shows the number of crystals that recrys-
tallize within each strain-step, as a percentage of the total number of crystals. The middle
plot shows the evolution of the largest eigenvalue, e1, for the middle layer (solid curve)
and the top and bottom layer (dashed curve). The bottom plot shows the total model time
at each strain-step.

2.6.1 Results

Figure 2.4 shows the evolution of the e1 eigenvalues, the number of polygonization events and

the model time for each strain step in the uniaxial-compression tests (runs 1-6 in Table 2.2). A

uniaxial-compression stress environment causes an increase in the fabric strength. For the low-

stress runs (1,3 and 5) polygonization is not active initially because the strain rate is too low to

generate dislocations faster than they are being destroyed by recovery processes, unlike the high-

stress runs (2,4 and 6). As the crystals grow, however, the absorption of dislocations at crystal

boundaries decreases, triggering polygonization events even as the strain rates decrease due to
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work hardening. The effect of NNI in these experiments is to change the timing and rate of poly-

gonization. Nearest-neighbor interactions distribute stress among crystals, such that they are no

longer all experiencing the same effective stress. This modification of the stress distribution tends

to cause polygonization events to be evenly distributed in time, rather than tightly clustered at

a threshold strain. In each run, when polygonization becomes active, there is a corresponding

reduction in the rate of evolution (slope of the middle graph).

Figure 2.5 shows the separation between the eigenvalues, e1, of the middle and top/bottom

layers for runs 1-6. In all cases, we see the separation of the eigenvalues reduced over time be-

cause, when all other effects are equal, the rotation rate decreases as the fabric strengthens. How-

ever, the separation of eigenvalues reduces slowly enough that the fabric variation is measurable

for up to at least 0.30 bulk strain. This reduction in the eigenvalue separation happens because

each layer’s fabric nears its stress-equilibrium state. All three layers will ultimately approach the

same equilibrium fabric because they are under the same stress and temperature, and have the

same material properties (e.g. impurity content). Polygonization events tend to slow down fabric

evolution, which can result in an increase of the separation if the polygonization events dominate

the fabric evolution, as seen in the no NNI runs (1 and 2) at high bulk strains. Likewise, in the

high stress NNI runs (2,4 and 6), polygonization is very active early in the evolution, due to the

high strain rates. In these runs, polygonization and strain-induced rotation are close to being bal-

anced, causing the separation to be maintained to higher bulk strains. The weaker fabric will have

a higher strain rate, causing it to be slowed down more by the increased number of polygoniza-

tion events. However, in the low-stress runs with mild and full NNI (3 and 5), the separation at

any given bulk strain will be less than in runs without NNI, because the strain-induced rotation

dominates the polygonization. The weaker fabric will be able to evolve faster than the stronger

fabric, since it is not being slowed by many polygonization events.

Figure 2.6 shows the evolution of the e1 eigenvalues, polygonization events and total strain for

the pure-shear tests (runs 7-12 in Table 2.2). Similar to uniaxial compression, a pure shear envi-

ronment causes a strengthening of the fabric. In the low stress runs (7, 9 and 11), polygonization

events happen at a lower bulk strain, due to larger horizontal strain rates than in the uniaxial-

compression runs. Similarly, polygonization is much more active for the high-stress-pure shear

runs (8, 10 and 12) than for uniaxial-compression runs, resulting in the weakest fabrics after 0.35

strain among any of our experiments.

Figure 2.7 shows the separation between the eigenvalues, e1, of the middle and top/bottom

layers for the pure-shear runs (7–12). As in the uniaxial-compression runs, we see the separation
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Figure 2.5: Separation of the largest eigenvalue, e1, between the top layer and middle layer
for the uniaxial-compression runs, 1–6. The top plot shows the low-stress runs 1,3 and
5. The bottom plot shows the high-stress runs 2,4 and 6. The solid curves indicate runs
7 and 8 with no nearest-neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the dashed curves
indicate runs 9 and 10 with mild nearest-neighbor interaction ([ζ,ξ] = [6,1]) and the dotted
curves indicate runs 11 and 12 with full nearest-neighbor interaction ([ζ,ξ] = [1,1]).

of the eigenvalues decrease over time in all cases, yet remain measurable to at least 0.30 bulk

strain. In the low-stress runs with NNI (9 and 11), polygonization starts at lower bulk strains,

causing the separation to decrease more quickly than for the no NNI run (7). Polygonization is

very active in the high-stress runs (8, 10 and 12), causing the separation to be maintained to a

higher bulk strain than in any other test. Polygonization dominates the fabric evolution in the no

NNI run (8), causing a large increase in the separation of the eigenvalues, that is more pronounced

than in the uniaxial-compression runs.

2.7 Taylor dome experiments

Taylor Dome is a small peripheral dome (20km×80km) of the East Antarctic ice sheet, just inland

of the Transantarctic Mountains, and provides ice to outlet glaciers entering Taylor Valley and

McMurdo Sound. An ice core was drilled to bedrock on the summit of Taylor Dome ( 77◦47′47′′S,

158◦43′26′′E) to a depth of 554m in 1994. Near the bed the ice is > 230ka old; the depth-age
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profile shown in Figure 2.8 (Steig and others, 1998, 2000). The ‘kink’ in the depth–age profile

is synchronous with the last glacial–interglacial transition. The Taylor Dome ice core provides

a stratigraphically undisturbed record through the entire last glacial cycle (Grootes and others,

1994).

Ice samples were cut from the ice core for thin-section microstructure analysis. Each thin sec-

tion’s fabric was determined using an automatic ice fabric analyzer (Wilen, 2000; Hansen and

Wilen, 2002; Wilen and others, 2003). The instrument consists of an optical bench that has two

rotating stages containing polarized lenses. A thin section is mounted in a sample holder on

the sample stage, between the crossed polarizers. A diffused light source illuminates the sample

through one of the polarizers.

The ice fabric analyzer has a digital camera which measures the extinction angle of each pixel

from the sample as it is rotated. The sample is rotated nine times in nine different positions. The

extinction angle determines the plane containing the c-axis (up to 90◦), and the plane intersections

from the nine different positions determine the unique c-axis direction. Refraction corrections

(analogous to Kamb corrections for manual technique) are included. A NI Labview
TM

routine au-

tomatically calculates the angle between the c-axis and the z-axis (θ) and the angle between the

projection of c-axis on the x-y plane and the x-axis (φ), for each grain. The error is < 0.5◦ for both θ

and φ. This corresponds to an measurement error of less than±0.001 in the eigenvalues of the thin

sections. The fabric profile with depth is shown in Figure 2.9. The eigenvalues vary by ±0.1 in the

top 200m of Taylor dome; these variations are two orders of magnitude greater than the measure-

ment error. Because of the low density of thin sections, it is not possible to distinguish whether

these variations are due to climate, statistical fluctuations due to the number of measured crystals,

or other microstructural processes. However, these variations are on the order of what we expect

from climate variations and, when combined with a higher density measurement technique (e.g.

sonic logging), these are the type of variations that may be preserving a climate signal. Further, the

difference in the eigenvalues e2 and e3 suggest a lack of rotational symmetry; this implies Taylor

Dome is not a perfect dome and a combined stress state is required to model it accurately.

Additionally, Taylor Dome has a very low accumulation rate and therefore little advection,

leading to a nearly linear temperature profile (Waddington and Morse, 1994). We use a linear

temperature profile where the temperature, T, at the surface is the mean annual surface air tem-

perature, −43◦C, and increases to −26◦C at the bedrock (Grootes and others, 1994; Morse, 1997).

As the temperature never gets above −26◦C, migration recrystallization activity is likely negligi-
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Run 7: No NNI, low stress
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Run 8: No NNI, high stress
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Run 9: Mild NNI, low stress
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Run 12: Full NNI, high stress
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Run 11: Full NNI, low stress
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Run 10: Mild NNI, high stress

Figure 2.6: The pure-shear runs, 7-12 (Table 2.2). See Figure 2.4 caption for details.

ble here; it is well below the theoretical temperature for activation (above approximately −10◦C;

Duval and Castelnau, 1995).

2.7.1 Experimental setup

We use the depth–age (Figure 2.8) and depth–temperature profiles to model an idealized ice-sheet

divide with the characteristics of Taylor Dome. We calculate a depth–stress profile based on an

idealized, symmetric ice divide (as described by Raymond, 1983), defined by the ice thickness and

the vertical velocity of ice at the surface. We assume that these profiles are constant throughout

time, so that we can use the model time to interpret a depth from the depth–age profile and then a

stress and temperature from their respective profiles. From these profiles we define a stress–time

profile that drives the fabric evolution.

The deviatoric stress components, σij, of a dome-type (circularly symmetric) ice divide are
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σσσ =


1
2 σ 0 0

0 1
2 σ 0

0 0 −σ

 , (2.31)

σ = 2A−1/n
(

2
|vs|
h

)1/n(
1− d

h

)1/n vs

|vs|
, (2.32)

where A is the flow parameter from Glen’s flow Law (Glen, 1955), n is the exponent in Glen’s

flow Law, vs is the vertical component of the ice velocity at the surface, h is the ice thickness and

d is the depth. We interpret A from the values given in (Paterson, 1994, p. 97) based on the ice

temperature, and vs from the top of the depth–age profile (the average accumulation rate over the

century preceding 1994). Likewise, deviatoric stress components, σij, of a ridge type ice divide are

σσσ =


σ 0 0

0 0 0

0 0 −σ

 , (2.33)

where σ is the same as in Eqn (2.32).

In reality, Taylor Dome is likely experiencing a higher stress than our idealized model because

it assumes a flat bed. It also does not have constant depth–age, depth–temperature and depth–

stress profiles. Because our model does not solve for ice flow, the assumptions in our idealized

model do not account for possible strain enhancements, such as impurity-enhanced ice flow (Pa-

terson, 1991; Faria and others, 2009), or the feedback between layers with different rheological

properties, such as the feedback that can lead to concentrated shearing on layers with crystals ori-

ented to be soft in shear (Budd and Jacka, 1989; Durand and others, 2007; Pettit and others, 2007).

In general, layers that are rheologically harder in the direction of the dominant stress component

will deform more slowly and the fabric will evolve more slowly if surrounded by softer layers; in

our model, each layer evolves independently. Therefore, we expect our modeled fabric evolution

to be slower and more uniformly distributed between layers than within Taylor Dome.

We calculated a depth–stress profile for both dome-like and ridge-like symmetry, as shown

in Figure 2.10. Taylor Dome falls somewhere between these two end members, but, based on

geometry, it is closer to a dome-like symmetry.

Similar to our constant-stress experiments, we modeled the evolution of a cuboid with three

fabric layers of 8000 crystals. We start the model at a depth just below the pore close-off depth

at 100m, and run the model to a depth 547.2m through both the ridge-like and dome-like stress
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Figure 2.7: Separation of the largest eigenvalue, e1, between the top layer and middle layer
for the pure-shear runs, 7-12. The top plot shows the low stress runs 7, 9 and 11. The
bottom plot shows the high stress runs 8, 10 and 12. The solid curves indicate runs 7 and 8
with no nearest-neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the dashed curves indicate
runs 9 and 10 with mild nearest-neighbor interaction ([ζ,ξ] = [6,1]) and the dotted curves
indicate runs 11 and 12 with full nearest-neighbor interaction ([ζ,ξ] = [1,1]).

profiles. The time-step was 100a and the modeled depth range corresponds to 210ka of evolu-

tion. For all three layers, we use an initial uniform crystal size, D0, of 1.5mm, which is consistent

with the average crystal size observed at 100m depth in Taylor Dome, and agrees with our the

crystal-growth factor, K, (Eqn (2.1)) using an initial crystal size of 1mm (Benson, 1962). For the

middle layer, we generated the initial fabric, based on a concentration parameter for the Watson

distribution of k = −2.4 (e1 = 0.567). The concentration parameter was estimated at a 100m depth

from a linear interpretation of the thin sections eigenvalues (e1 = 0.571, e2 = 0.240, and e3 = 0.189;

Eqn (2.28)). Since the Watson distribution is circularly symmetric, e2 and e3 are set equal to a

symmetric distribution with the same vertical concentration; e2 = e3 = (1− e1)/2. For the top and

bottom layer, we generated fabrics that are slightly less concentrated; k = −2.0 (e1 = 0.538, and

e2 = e3 = 0.231). The initial fabrics are shown in Figure 2.3 (these are the same fabrics used in the

constant stress experiments). This fabric is evolved for one time-step, and then used as the input
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Figure 2.8: Depth–age profile for Taylor Dome, East Antarctica. (Steig and others (1998,
2000))

for the next time-step. The NNI parameters from Eqn (2.10) were varied ([ζ,ξ] = [1,0], [6,1], [1,0])

for different model runs (Table 2.3).

2.7.2 Results

Figure 2.11 compares the modeled evolution for the middle fabric section of the 100m fabrics for

a dome-like stress profile with the measured fabric in Taylor Dome. Likewise, Figure 2.12 shows

the modeled and measured fabric for a ridge-like symmetry. The modeled fabric evolves more

slowly than the measured fabric in Taylor Dome because of our model assumptions: the idealized

steady-state stress profile we are using and the lack of the fabric–deformation feedback. Nearest-

neighbor interactions further slows down the evolution of the fabric, because they modify the

crystal strain rates (Eqn (2.10)). This can be seen in the Schmidt plots of the evolved fabrics for

each of these cases, which are shown in Figure 2.13. After the same total strain, the fabric with no

NNI has more crystals concentrated towards vertical than the fabric with full NNI (Figure 2.14).

Figure 2.15 shows the separation between the largest eigenvalues, e1, of the middle and top/

bottom layers in the dome-like and ridge-like stress tests (runs 13–15 and 16–18, respectively;

Table 2.3) and the number of polygonization events. As in the constant-stress experiments, we

see the separation of the eigenvalues decreases over time in all cases, but they remain measurable

for 210ka. In both the dome-like and ridge-like cases, NNI causes the separation to decrease and
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Figure 2.11: Evolution of fabric within an ice sheet based on Taylor Dome for the dome-
like Taylor Runs, 13-15 (Table 2.3). The three left plots show the evolution of the three
eigenvalues for the middle fabric layer in Taylor Dome and the rightmost plot shows the
number of polygonization events within a time-step as a percentage of the total number of
crystals. In the plots, the gray open circles are thin section measurements in Taylor Dome,
the solid curve corresponds to no nearest-neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)),
the dotted curve indicates mild nearest-neighbor interaction ([ζ,ξ] = [6,1]) and the dashed
curve indicates full nearest-neighbor interaction ([ζ,ξ] = [1,1]).
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Figure 2.12: Same as Figure 2.11, but within a glacier based on Taylor Dome for the ridge-
like Taylor runs, 16-18 (Table 2.3).

polygonization starts at lower bulk strains than in the no NNI runs. In the ridge-like runs (16–

18) the fabric is adjusting from the circularly symmetric distribution to an elliptical distribution

expected from pure shear (Paterson, 1994). This causes some crystals to have a very high strain

rate, causing polygonization to be much more dominate than in the dome-like runs (13–15).

2.8 Discussion

In all of our experiments, a variation in fabric, such as that created by a fluctuation in climate, is

preserved until the fabric equilibrates to the stress state. For uniaxial compression and pure shear,

there is a ‘window of opportunity,’ in which the separation of eigenvalues is sufficient to pre-

serve the climate signal because the weaker fabric takes more time to equilibrate. The minimum

separation required to measure a fabric anomaly depends on the measurements technique.

For a constant applied stress, the length of time this window is open depends on the magnitude

of the initial fabric variation, the initial strength of the weaker fabric, the magnitude of the applied

stress (which controls the strain rate and, therefore, the rate of polygonization) and the strength

of the nearest-neighbor interactions. If the fabric variation is small to begin with, it may become

Table 2.3: Summary of the run setup of the Taylor Dome experiments.

Dome Ridge
Run NNI [ζ,ξ] Run NNI [ζ,ξ]
13 None [1,0] 16 None [1,0]
14 Mild [6,1] 17 Mild [6,1]
15 Full [1,1] 18 Full [1,1]
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No NNI Mild NNI Full NNI

0 20 40 60 80 100

Σ

Figure 2.13: Contoured Schmidt plots of the evolved middle layer fabric after 210000
years for dome-like (top row) and ridge-like (bottom row) symmetry. The left column
shows no nearest-neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the middle column shows
mild nearest-neighbor interaction ([ζ,ξ] = [6,1]), and the right column shows full nearest-
neighbor interaction ([ζ,ξ] = [1,1]). The plots are contoured in the same way as in Fig-
ure 2.3, but the fabrics are now contoured at levels of 0,20Σ, ...,100Σ.
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Figure 2.14: Cumulative strain in the Taylor Dome runs. The top plot shows the cumula-
tive strain undergone by the modeled fabrics as a function of the largest eigenvalue, e1, for
the dome-like Taylor runs, 13-15 (Table 2.3). Likewise, the bottom plots show the ridge-
like Taylor runs, 16-18. In the plots, the solid curves corresponds to no nearest-neighbor
interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the dotted lines indicates mild nearest-neighbor in-
teraction ( [ζ,ξ] = [6,1]) and the dashed lines indicates full nearest-neighbor interaction
([ζ,ξ] = [1,1]).

immeasurable before either fabric reaches equilibrium. If the fabric variation is sufficiently large,

the weaker initial fabric controls the time the window is open because the window closes as this

weaker fabric reaches equilibrium with the local stress state (the stronger fabric reaches equilib-

rium before the weaker fabric). Higher stress leads to higher strain rates and faster rotation of the

crystals. Therefore, the fabric will equilibrate and the window will close more quickly in time.

Polygonization plays a major role in the evolution of fabric. Each additional polygonization

event rotates a crystal away from the principal stress direction, therefore acting to slow down the

strengthening of the fabric. Polygonization events, however, do not occur uniformly in time be-

cause each event requires a threshold dislocation density. At high strain rates (resulting from high

stress in our experiments), polygonization events occur often throughout the deformation process.

But at the low strain rates we studied, our model predicts a negligible number of polygoniza-
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Figure 2.15: Largest eigenvalue separation for Taylor Dome. The top plots show the sepa-
ration of the largest eigenvalue, e1, between the top and middle fabric layers for the dome-
like Taylor runs, 13-15 (Table 2.3), as well as the total number of polygonization events
within a time-step, as a percentage of the total number of crystals. Likewise, the bottom
plots show the ridge-like Taylor runs, 16-18. In the plots, the solid curves correspond to
no nearest-neighbor interaction ([ζ,ξ] = [1,0]; Eqn (2.10)), the dotted curves indicates mild
nearest-neighbor interaction ([ζ,ξ] = [6,1]) and the dashed curves indicates full nearest-
neighbor interaction ( [ζ,ξ] = [1,1]).

tion events until 0.20 or 0.30 strain. When neighboring crystals interact, however, polygonization

events occur earlier in the deformation process.

Nearest-neighbor interactions minimize the differences in strain rates among neighboring crys-

tals. With NNI, a poorly oriented or hard crystal surrounded by soft crystals will deform faster

than without NNI, advancing when the crystal will polygonize. Likewise, a soft crystal sur-

rounded by hard crystals will deform more slowly, delaying when the crystal polygonizes. How-

ever, because this crystal is deforming less, it will stay in a softer orientation longer, while the

neighboring hard crystals will also move to a softer orientation through polygonizations (their

deformation is being increased by the softer crystal). The net effect of this is to increase the overall

strain rate of the ice, advance the timing of polygonizations and increasing the overall number of

polygonization events. Since NNI causes the crystals to bunch up (the hardest crystals get softer
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and the softest crystals get harder), the window will close more quickly; the separation between

the fabrics will be reduced.

By finding the time (and therefore strain) at which the eigenvalues separation is less than

0.01, we can determine how long the window stays open. Our model results suggest that at low

stresses, similar to those found at thick cold ice divides, the window stays open for ≈ 2000ka. At

higher stresses, similar to those found at smaller ice sheets and ice caps, the window stays open

for ≈ 10ka.

When we apply this model to Taylor Dome, we see that the low stresses and cold temperatures

result in maintaining the separation of eigenvalues throughout the depth of the ice sheet. This

suggests that a fabric anomaly created by a fluctuation in climate may be measurable deep in

the ice: the window stays open. The window stays open even with full NNI implemented. It is

important to note that our fabric only evolves to ≈ 0.3 strain throughout our Taylor Dome profile

since the idealized stress profile was generated with an isotropic ice assumption and our fabric

experiences stress hardening as it evolves. Realistically, the fabric would evolve to ≈ 1.0 strain if

the fabric–deformation feedback was included. This may cause the fabric signal to be lost higher

up in ice sheet, however, the fabric–deformation feedback may also cause an initial enhancement

of the climate signal by causing the stronger fabric to evolve much faster than the weaker fabric.

Integrating this model into a flow model would allow this feedback to be studied.

2.9 Conclusions

Our model for fabric evolution in ice suggests that for compressive-stress regimes, total strains of

at least 0.30 are necessary to rid fabric of its ‘memory’ of past fabric and stress states. Near an

ice divide, most ice does not reach 0.30 total strain until deep in the ice (deeper for cold or low

stress divides, and shallower for warm or high stress divides). Therefore, we can preserve a fabric

anomaly, such as may be induced in the firn by a fluctuation in climate, throughout most of the

depth of the ice sheet.

The rate of fabric evolution depends on strain rate, and our model assumes the strain rate is

related to stress, based on the analytic flow law developed by Thorsteinsson (2001, 2002), which is

an extension of Glen’s flow law and uses the typical softness parameters as reviewed by (Paterson,

1994, p. 97). As discussed in Paterson, many ways have been suggested to alter the isotropic

softness parameter. If we increase the value of the softness parameter in our model, then the

same stress will result in higher strain rates. While higher strain rates will rotate the crystals more

quickly and increase the rate of fabric evolution, higher strain rates also induce polygonization
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events, which slows bulk fabric evolution and preserves the fabric anomaly for longer. The net

effect of softer ice depends on the balance of these two processes.

If different layers have different isotropic rheologies (e.g. due to differences in impurities), then

the complex feedbacks between stress and strain-rates may cause the softer ice to have a higher

strain rate. This high strain rate will lead to faster fabric evolution unless it triggers polygonization

events, which slows down fabric evolution. The fabric evolution will be determined by the balance

of these two processes. Furthermore, impurities tend to impede crystal growth, which increases

the likelihood of a polygonization event (as Eqn (2.3) shows, the rate of polygonization is inversely

proportional to crystal size).

Differences in rheologies between layers may also be generated by the fabric itself, because,

in compression, crystals tend to rotate to a ‘hard’ orientation. The stronger the fabric, the harder

the ice in compression. In our model results, this is what causes the decrease in strain rate as the

fabric strengthens, slowing the rate of fabric evolution.

Finally, our model assumes cold ice (−30◦C) where migration recrystallization is likely negligi-

ble. At higher temperatures, when migration recrystallization is known to be active, new, strain-

free crystals grow quickly, polygonization events decrease and fabric weakens because the new

crystals grow in a ‘soft’ orientation. The effects of migration recrystallization on fabric evolution

or the ability to preserve a fabric anomaly is not fully understood. Data from the EPICA Dome C

borehole suggests that fabric variability maintains its correlation with climate variability despite

active migration recrystallization (Gusmeroli and others, 2012). Kipfstuhl and others (2009) have

shown that migration recrystallization may be active at much lower temperatures and strain rates.

Because a real ice divide is rarely in steady state, often migrating its position laterally, ice rarely

only experiences a pure compressive stress state (uniaxial or pure shear). Along its particle path,

an ice particle will experience a combination of compressive and simple-shear regimes that varies

throughout the depth. Our results suggest what is possible for pure compressive regimes. When

simple shear is included, the results may be significantly different. Our goal in this paper was to

isolate the compressive regimes and further work is required to detail the effect of simple shear

on a fabric variation.

We can, however, speculate on the response to simple shear of a fabric variation, similar to

the one we studied here, because many of the same principles apply. The primary difference

between compressive and simple-shear states of stress is that fabric in simple shear tends to rotate

into a ‘soft’ orientation, with respect to the applied stress, rather than into a ‘hard’ orientation, as

happens with compressive regimes. This difference results in ice with strong fabrics having higher
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strain rates than ice with weaker fabrics under the same applied stress. Because fabric evolution

depends on strain rate, the stronger fabric will evolve fabric more quickly than the weaker fabric.

Rather than simply slowing the decrease in separation (slowly closing the window), there will

be a positive feedback that opens the window wider. This effect is observable in the deepest ice in

ice sheets, where shear stress is typically highest; this deep ice exhibits the strongest variations in

fabric (Gusmeroli and others, 2012).

It is likely that fabric can be developed as a climate proxy, because a climate-induced variation

in fabric can be preserved throughout the depth of an ice sheet. Through the use of geophysical

inverse methods, it may be possible to use a fabric-evolution model to invert continuous fabric

data (e.g. a sonic velocity profile) for past temperatures. However, there is still much research

needed in order for the fabric proxy to be realized. A fabric-evolution model that includes dy-

namic recrystallization will need to be coupled to an ice-flow model, and the response of fabric

variations across a wide variety of stress states will have to be quantified. Furthermore, the pa-

rameterizations used to model the dynamic recrystallization processes need to be robust, and new

parameterizations may need to be developed, especially in the case of migration recrystallization

(Kipfstuhl and others, 2009).
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Chapter 3

The response of fabric variations to simple shear and migration recrystallization 1

3.1 Abstract

The observable microstructures in ice are the result of many dynamic and competing processes.

These processes are influenced by climate variables in the firn. Layers deposited in different cli-

mate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may

‘remember’ these past climate regimes. We model the evolution of fabric variations below the

firn-ice transition and show that the addition of shear to compressive-stress regimes preserves

the modeled fabric variations longer than compression-only regimes because shear drives a pos-

itive feedback between crystal rotation and deformation. Even without shear, the modeled ice

retains memory of the fabric variation for ∼ 200ka in typical polar ice-sheet conditions. Our

model shows that temperature affects how long the fabric variation is preserved, but only af-

fects the strain-integrated fabric evolution profile when comparing results straddling the thermal-

activation-energy threshold (∼ −10◦C). Even at high temperatures, migration recrystallization

does not eliminate the modeled fabric’s memory under most conditions. High levels of nearest-

neighbor interactions will, however, eliminate the modeled fabric’s memory more quickly than

low levels of nearest-neighbor interactions. Ultimately, our model predicts that fabrics will retain

memory of past climatic variations when subject to a wide variety of conditions found in polar ice

sheets.

3.2 Introduction

Observations show that the microstructure of ice records aspects of climate history (e.g., Pater-

son, 1991; Gow and others, 1997; Durand and others, 2007; Pettit and others, 2011). However,

understanding if and how the climate ‘memory’ is preserved and evolved through time is chal-

lenging (Kennedy and others, 2013). Paterson (1991) showed that ice-age ice typically consists of

smaller grains and stronger fabric (statistically preferred orientation of the ice crystal lattice) than

Holocene ice, providing the first hint of a connection between paleoclimate and microstructure

in an ice sheet. More recently, both thin-section data and sonic-velocity data from Dome C, East

Antarctica, show an abrupt transition in the ice rheology at 1750m depth, which corresponds to

a transition between the warm MIS-5 (marine isotope stage 5) and the cool MIS-6 ∼ 150ka ago

(Durand and others, 2007; Gusmeroli and others, 2012). Many microstructural features (e.g. dust

1Published as Kennedy, J. H. and Pettit, E. C. (2015). The response of fabric variations to simple shear and migration
recrystallization. Journal of Glaciology, 61(227), 537-550. doi:10.3189/2015JoG14J156

55



particles, grain size, fabric) correlate with climate history (e.g., Durand and others, 2006b). This

correlation is caused by a number of interdependent microstructural processes (e.g., Alley, 1992;

Faria and others, 2014b).

Classically, three main processes account for the observed grain and fabric structure through-

out the depth of the ice sheet (e.g., Alley and others, 1986; Alley, 1992; De La Chapelle and others,

1998; Cuffey and Paterson, 2010). Normal grain growth is the temperature-controlled coarsening

of grains through grain-boundary migration in order to reduce the total grain-boundary energy

stored in the ice. Large grains consume small grains in such a way that the average grain cross-

sectional area increases linearly with time (Alley and others, 1986). This process is considered to

be active throughout the depth of the ice sheet, but is counter-balanced by polygonization at inter-

mediate depths of the ice sheet, where a steady grain-size profile is observed (Alley, 1992). Strain

energy builds in a grain during deformation, and bending or twisting stresses cause dislocations to

form a ‘wall’, which eventually divides (polygonizes) the grain and causes a small mis-orientation

between the grains’ crystal lattices. At the greatest depths of an ice sheet, where the temperature

is > −10◦C, migration recrystallization becomes active. Here temperatures are great enough for

grain boundaries to move easily, driven by differences in stored strain energy (Alley, 1992). With

high enough stored strain energy, it becomes energetically favorable to nucleate a new strain-free

grain, which rapidly migrates through neighboring grains and has an orientation that is depen-

dent on the applied stress (Duval and Castelnau, 1995). With sufficiently high rates of migration

recrystallization, an inverse power-law relationship between grain size and stress forms (Jacka

and Jun, 1994) and an entirely new fabric structure results. Because fabric and grain structure are

a result of recrystallization processes, conventional wisdom is that fabric will not maintain any

past climate information.

Although the classic three-process model, or ‘tripartite paradigm,’ has successfully described

the average grain size and fabric in ice cores, observations in the last decade have led to new per-

spectives on these processes (e.g., Faria and others, 2014a,b, cf. De La Chapelle and others 1998).

Techniques that allow observations on the scale of micrometers or smaller (e.g., Kipfstuhl and

others, 2006; Obbard and others, 2006; Faria and others, 2011) are now common, whereas classical

observations typically were on the scale of millimeters or larger (Faria and others, 2014a). Some

observations from these high-resolution techniques cannot be accounted for under the tripartite

paradigm if it is considered a description of the actual microstructural physics. For example, in

Dronning Maud Land, Antarctica, the firn grain boundary structure appears to have been domi-

nated by migration recrystallization during the firn-ice transition, even though it is much colder
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(annual mean temperature −46◦C) than where migration recrystallization is considered to be a

dominant process (& 10◦C; Kipfstuhl and others, 2009). However, due to its success in describ-

ing the microstructure observed in ice (summarized by Faria and others, 2014a,b), the tripartite

paradigm provides a robust phenomenological model of the average grain size and especially the

fabric evolution (as discussed in the next section), despite its imperfections.

Observations of more recrystallization in the firn and ice of an ice sheet than expected under

the tripartite paradigm (e.g., Kipfstuhl and others, 2009) would seem to reinforce the conventional

idea that fabric cannot preserve a memory of past climate. Indeed, the memory is unlikely to be

stored directly in the grain structure or fabric strength of a particular layer of ice, as they are con-

tinually evolving. The relative differences in the fabric between layers, however, can be preserved

under certain conditions (Kennedy and others, 2013).

Because the microstructural processes active in the firn are sensitive to climatic variables (Al-

ley and others, 1990), layers of firn experiencing different climate regimes may have observable

variations in the fabric which can be preserved. For example, in polar regions, vapor deposition is

the primary method of grain growth in the upper firn and it is anisotropic: deposition will favor

either the basal or prism faces of the ice-crystalline lattice, depending on the temperature (Nelson

and Knight, 1998). This process causes grains with the preferred face parallel to the vapor pressure

gradient to grow more than grains in a less favorable orientation. Because these grains grow at the

expense of other grains (Colbeck, 1983), the well-oriented grains are more likely to remain (Carns

and others, 2010, are developing a model to explore this process). Variations in texture and fabric

in the firn may reflect variations in temperature and vapor-pressure gradients (Adams and Miller,

2003). While measuring fabric in firn is difficult, several studies have reported non-isotropic fabric

measurements from firn (Di Prinzio and others, 2005; Fujita and others, 2009; Montagnat and oth-

ers, 2012). Montagnat and others (2012) found that using non-isotropic initial fabrics was required

during simulations of the fabric evolution in Talos Dome, East Antarctica, for a good quantita-

tive match to observed fabrics. Therefore, fabric variations may arise from climatic variations and

these variations may be present beneath the firn-ice transition. Fabric variations then may pre-

serve memory of past climate, as long as the fabric variation is observable. (A loose analogy can

be drawn to the familiar climate proxy, δ18O; it is the variation in δ18O, not the particular amount

of the oxygen isotope present, that allows us to extract a temperature history.)

Here, we ask how long a subtle fabric variation (of any origin), just below the firn-ice transition,

can be preserved within an ice sheet. Kennedy and others (2013) used a model based on the

tripartite paradigm to show that a subtle variation in fabric can persist throughout the depth of an
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ice sheet when the ice is in a vertical uniaxial-compression or pure-shear regime and experiences

polygonization events typical of ice divides. We build on this work to show that it is possible

to preserve a subtle variation in fabric in a simple-shear stress regime and subject to migration

recrystallization. Ice flows dominantly by simple shear on the flank of an ice sheet, while ice at

the divide may experience some simple shear, especially in the case of divide migration. We also

show that for any of the modeled stresses or temperatures, migration recrystallization does not

‘erase’ the fabric variation. Together, the combination of uniaxial compression, pure shear, simple

shear, polygonization, and migration recrystallization account for the dominant processes within

an ice sheet that affect the fabric evolution.

3.3 Fabric

A sample of ice can display a statistically preferred orientation of its crystal lattices called fab-

ric. The statistical measure of this preference is often reported as eigenvalues and eigenvectors of

the (volume-weighted) average orientation tensor of the sample. The grain volume can be deter-

mined from the measurement of the two-dimensional grain area in a cross section of the sample

(Woodcock, 1977; Gagliardini and others, 2004).

The orientation tensor is calculated from a sample of N grains:

A =
N

∑
n=1

fn~cn⊗~cn , (3.1)

where fn is the estimate of the grain’s volume fraction, ~cn is a unit vector describing the grain’s

c-axis orientation, and ⊗ is the vector direct (outer) product. The eigenvalues, ei, for i = 1,2,3,

of A then represent the spatial distribution of the orientations, and how tightly the crystals are

aligned to the eigenvectors, ~vi. The eigenvalues are labeled in descending order (e1 > e2 > e3) and

sum to unity (e1 + e2 + e3 = 1). For a single-maximum fabric, the statistically preferred orientation

is the first eigenvector, ~v1. The first eigenvalue, e1, measures the fabric strength. Fabrics typically

strengthen throughout the depth of an ice sheet in response to stress-induced velocity gradients

driving grain rotation in the ice (e.g., Paterson, 1991; Arnaud and others, 2000; Di Prinzio and

others, 2005; Durand and others, 2007; Gow and Meese, 2007).

Microstructural processes further influence the volume orientation of ice and can significantly

impact the fabric statistics. The three that affect lattice orientation are rotation recrystallization

(RRX), where new grain boundaries are formed through the progressive rotation and migration

of sub-grain boundaries (of which polygonization is a special case), and strain-induced boundary
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migration (SIBM; also called migration recrystallization) from old/existing grains (SIBM-O) and

from nucleation of new grains (SIBM-N) (see Faria and others, 2014b, appendix A). Of these three,

only SIMB-N is known to affect the fabric strength significantly. RRX produces new grains, of

differing size, with small lattice mis-orientations (< 10◦; Alley and others, 1995), but the volume

average of these new grains, and what is left of the old grain, will closely match the average be-

fore RRX resulting in a small weakening of the fabric. SIBM-O, in a statistical sense, is erasing

the orientation of a bit of ice and replacing it with an orientation drawn from the same parent

distribution of grains. Given a large number of grains, this will not affect the overall fabrics statis-

tics as long as there is not a preference to recrystallize grains in a certain orientation and the total

population of grains remains large. Due to the large amount of strain heterogeneity in deforming

ice, there should not be an orientation preference for SIBM-O (Faria and others, 2014b).

SIBM-N, in contrast, nucleates new grains with a random orientation (Wilson and others,

2014). The fabrics that arise when SIBM-N dominates the fabric evolution are typically aligned

for easy glide in the basal planes (the softest orientation) (Montagnat and others, 2009), indicating

that the nucleated grains most likely to grow are the ones oriented for easy glide. The influence of

SIBM-N on a fabric variation will then depend on the rates of SIBM-N in each layer, as well as the

rates of grain rotation. As long as the rates of SIBM-N remain low, or there is a differing rate in

the varying layers, SIBM-N will not immediately eliminate the fabric variation (as shown below).

Therefore, due to the way fabric is influenced by the microstructural processes, and the way it

is measured, we expect fabric to be particularly amenable to preserving variations.

3.4 The model

We use the topological model developed by Kennedy and others (2013), based on the analytic flow

law developed by Thorsteinsson (2001, 2002). This polycrystal model solves for fabric through

time, while incorporating nearest-neighbor interactions (NNI) and the tripartite parameterizations

of normal grain growth, polygonization and migration recrystallization (SIBM-N). This model

does not predict ice flow; therefore, it does not account for possible strain enhancements, such

as impurity-enhanced ice flow (Paterson, 1991; Faria and others, 2009). Nor does it include the

feedbacks between rheologically distinct layers that can lead to concentrated shearing on layers

with crystals oriented to be soft in shear (Budd and Jacka, 1989; Durand and others, 2007; Pettit

and others, 2007).

The model averages over a representative distribution of N individual ice crystals to calcu-

late the bulk response of the ice to stress. The crystals are arranged on a regular cuboidal grid
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Neighbor grains 

Grain 

Figure 3.1: The polycrystal structure. Left: An example of a polycrystalline cuboid with
three distinct fabric layers, where each color represents a different fabric. Each small cube
indicates one grain and each layer has 4× 4× 4 = 64 grains. The three-layered cuboid in
our model has 20× 20× 20 = 8000 grains in each layer. Right: An illustration of the grain
packing where each grain (gray) has six neighboring grains (white).

(Figure 3.1), where each crystal has six nearest neighbors. The crystals however, are considered to

evolve independently of each other and are embedded in an ice matrix. The matrix accommodates

crystal-boundary migration and acts as seeds for migration recrystallization (Thorsteinsson, 2002).

In the case of nearest-neighbor interactions, the resolved shear stress of the crystal is modified by

a factor depending on the average orientation of the surrounding crystals.

The distribution of N crystals can be divided into sub-distributions with distinct fabrics. The

evolution of each sub-distribution can then be calculated and compared with the others or with

the entire distribution through time.

Each crystal in the distribution has an associated orientation, ~cn, given by the co-latitude, θn,

and azimuth, φn, as well as an associated spherical size of diameter Dn and dislocation density ρn.

The model accepts an initial crystal distribution, stress, and temperature, then evolves the distri-

bution through uniform steps in time or strain. Figure 3.2 outlines the model process. First, the

initial crystal distribution is created and passed to the model. The model then applies a stress to

the distribution and calculates the individual crystal strain rates and velocity gradients using the

flow law developed by Thorsteinsson (2001, 2002). Next, it checks the recrystallization conditions

(outlined below), calculates the bulk crystal properties, and then rotates the crystals. After each

time- or strain-step, the model outputs the new distribution of crystals, the bulk strain, and the

number and type of recrystallization events. This new distribution of crystals is then fed back into

the model for the next time-step, along with the new stress and temperature. Because stress is an

input for this model, stress must be determined outside of the model.
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Figure 3.2: Flow chart of the model. The model is initialized with fabric data, deviatoric
stress, and temperature. For each time-step, strain rates and velocity gradients are calcu-
lated, dynamic recrystallization processes are applied to the fabric and then the grains are
rotated to calculate new fabric data. The new fabric data together with new stresses and
temperatures are fed back into the model to start the next time-step.

3.4.1 Model physics

Grains rotate due to gradients in velocity, which result from internal stresses experienced by the

ice. For polycrystalline ice, these stresses lie somewhere between two end-member assumptions:

uniform stress and uniform strain rates. In the uniform-stress assumption, each grain experiences

the same stress as the surrounding grains. Because ice crystals are highly anisotropic, an indi-

vidual grain’s strain rate, therefore, depends on its lattice orientation. In the uniform-strain-rate

assumption, each grain has the same strain rate as the surrounding grains. The stress the grain ex-

periences, then, depends on the grains’ orientation. Although the true nature of ice is somewhere

in between, the uniform-stress assumption is well adapted to describing polycrystalline ice due

to strong crystal anisotropy (Castelnau and others, 1996). Therefore, we apply a uniform stress to

each grain in the distribution. Furthermore, we restrict the deformation of a grain to be along the

slip systems in the basal plane causing the grain to only respond to the components of stress that
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Figure 3.3: Contoured Schmidt plots of the magnitude of the resolved shear stress, T . T
has been normalized by the maximum resolved shear stress ( T /max(T ); Eqn (3.3)) for
grains in the stress states of uniaxial compression, pure shear and simple shear (Eqn (3.18),
(3.19), and (3.20), respectively).

are parallel to the basal plane (termed the resolved shear stress, or RSS). The RSS, τ(s), on a slip

system, (s), is

τ
(s) = S(s) : σ

′
σ
′

σ
′ , (3.2)

where S(s) is the Schmidt tensor, which describes the orientation of the grain’s slip system (s), σ′σ′σ′ is

the deviatoric stress tensor for the stress applied to the fabric, and S(s) : σ′σ′σ′ = S(s)
kl σ′kl summing over

repeated indexes. The magnitude of the RSS, T , can then be calculated as

T =

∣∣∣∣∣∑(s)
τ

(s)b̂(s)

∣∣∣∣∣ , (3.3)

where b̂(s) is the direction of the Burgers vector for the slip system. Schmidt plots of T for a variety

of stress states are shown in Figure 3.3.

Using the analytic flow law (Thorsteinsson, 2001, 2002) the velocity gradient of a grain in re-

sponse to a stress, Lc, is
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Lc = βA(T)∑
(s)

S(s)|E c
τ

(s)|n−1(E c
τ

(s)) , (3.4)

where β is an adjustable constant to control the isotropic ice softness, A(T) is the temperature-

dependent flow parameter from Glen’s Flow Law (Cuffey and Paterson, 2010, p. 72), E c is the

local softness parameter due to nearest-neighbor interactions (NNIs), and n is the exponent in

Glen’s flow law (Glen, 1955).

The flow parameter A(T) follows an Arrhenius relation with a switch of activation energy at a

transition temperature, T? =−10◦C. The relationship for T in kelvin is

A(T) = A? exp
(
−Q±v

R

[
1
T
− 1

T?

])
(3.5)

where A? is a constant, R is the universal gas constant, and Q±v is the activation energy for volume

self-diffusion (Cuffey and Paterson, 2010, p. 72). Q±v = Q+
v = 115kJmol−1 for T ≥ T? and Q±v = Q−v =

60kJmol−1 for T < T? (Table 3.1).

The local softness parameter, E c, averages the magnitude of RSS the neighboring grains are

experiencing, T i, relative to the magnitude of RSS the grain is experiencing, T 0):

E c =
1

ζ + 6ξ

(
ζ + ξ

6

∑
i=1

T i

T 0

)
, (3.6)

where ζ is the relative contribution of the center grain, and ξ is the relative contribution of each

neighbor (Figure 3.1). Because the RSS, T 0, can be zero, there is a specified cap for the maximum

value of E c. Setting [ζ,ξ] to [1,0] in Eqn (3.6) is equivalent to the uniform-stress assumption

with no NNIs. Changing the values of [ζ,ξ] modifies the uniform-stress assumption (toward the

uniform-strain assumption) by redistributing the stress through explicit NNIs. Mild NNIs occur

when [ζ,ξ] is set to [6,1] such that the center grain contribution to E c is the same as the sum of

the neighboring grains. Full NNIs occur when [ζ,ξ] is set to [1,1] such that the center grain and

individual neighbor grains all contribute equally to E c.

Finally, the strain rate of a single grain is

ε̇̇ε̇ε
c =

1
2

[
Lc + (Lc)T

]
, (3.7)

where (Lc)T refers to the matrix transpose of Lc.
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Table 3.1: Values of the parameters used in the model.

Parameter Value Eqn Reference
Flow law constant, β 630 (3.4) Thorsteinsson (2001)
Glen’s exponent, n 3 (3.4) Cuffey and Paterson (2010), p.

55-57
Flow law constant, A? 3.5×10−25 Pa−3 s−1 (3.5) Cuffey and Paterson (2010), p. 74
Activation energy for
volume self-diffusion,
Q±v

Q+
v = 115kJmol−1

Q−v = 60kJmol−1
(3.5) Cuffey and Paterson (2010), p.

72-74

Initial grain diameter,
D0

1.5mm (3.10) Benson (1962)

Grain growth constant,
K0

8.2×10−9 m2 s−1 (3.11) Alley and others (1986);
Thorsteinsson (2002)

Activation energy for
grain-boundary
self-diffusion, Q±b

Q+
b = 81kJmol−1

Q−b = 42kJmol−1
(3.11) Cuffey and Paterson (2010), p. 40;

Jacka and Jun (1994)

Dislocation absorption
constant, α

1 (3.12) De La Chapelle and others (1998);
Montagnat and Duval (2000)

Polygonization ratio, δ 0.065 Thorsteinsson (2002)
Polygonization
orientation change, ∆θ

5◦ Thorsteinsson (2002)

Initial dislocation
density, ρ0

1010 m−2 De La Chapelle and others (1998)

Minimum dislocation
density to form a
sub-grain boundary, ρp

5.4×1010 m−2 De La Chapelle and others (1998)

Dislocation energy
constant, µ

0.01 (3.13) Mohamed and Bacroix (2000);
Thorsteinsson (2002)

Dislocation strain field
range, Re

1√
ρ

(3.13) Mohamed and Bacroix (2000)

Grain boundary energy,
γg

0.065Jm−2 (3.14) Ketcham and Hobbs (1969)

The bulk velocity gradient is calculated by averaging the single-crystal velocity gradients, and

will be influenced more by larger crystals than smaller crystals. We calculate the volume of a

crystal from its diameter, D, and use its volume fraction, f , as a statistical weight for the calculation

of the bulk velocity gradient (Gödert and Hutter, 1998; Montagnat and others, 2014). Therefore,

the modeled bulk velocity gradient is

Lm =
N

∑
n=1

fnLc
n , (3.8)

where N is the number of crystals in the representative distribution and
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fn =
D3

n

∑
N
m=1 D3

m
.

The modeled bulk strain rate is then

ε̇
m

ε̇
m

ε̇
m =

1
2

[
Lm + (Lm)T

]
. (3.9)

However, we caution readers that this modeled strain rate will not correspond to strain rates mea-

sured in situ, because we are solving for fabric evolution, not ice flow. The deformation of ice is not

only a function of fabric (as modeled here) but of many co-dependent processes, which accommo-

date ice deformation (Thorsteinsson and others, 1999). Further, using the uniform-stress assump-

tion results in ice that is too stiff (Montagnat and others, 2014), meaning the fabric evolves too

much for the modeled stain rates compared with measured strain rates. Using nearest-neighbor

interactions partially alleviates this problem by allowing hard grains to deform.

Nevertheless, the cumulative modeled bulk strain, provides a good measure of the overall

fabric evolution (in the context of the model), and is useful when comparing different model runs,

as we do below. In order to compare results from our model with measured fabrics, the flow law

constant, β (Eqn (3.4)), and parameters controlling the local softness, [ζ,ξ] (Eqn (3.6)), need to be

tuned to reproduce the observed fabric evolution in time. How much the strain rate is under-

represented in the model can then be determined. The affects of changing these parameters in our

model are discussed below.

3.4.2 Recrystallization processes

Once the velocity gradient and strain rates are calculated for each grain, the parameterizations of

normal grain growth, polygonization, and migration recrystallization (SIBM-N) are applied to the

grain distribution before the grains are rotated into new orientations.

Normal grain growth

Under the tripartite paradigm, normal grain growth occurs when grain boundaries migrate, in

order to reduce the overall grain boundary energy. The grain growth is a function of boundary

curvature, intrinsic properties (e.g. temperature, thickness, diffusivity of water molecules), and

extrinsic material (e.g. impurities, bubbles). This grain growth can be described by a parabolic

growth law (Alley and others, 1986), where the grain diameter, D, increases with time:
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D2 = Kt + D0
2 , (3.10)

where K is the grain-growth factor, t is time, t0 is the initial time, and D0 is the grain diameter

at time t0. The grain-growth factor is a function of the intrinsic properties of the ice and the

temperature:

K = K0 exp

(
−

Q±b
R T

)
, (3.11)

where K0 is a constant that depends on the intrinsic properties of the grain boundaries, Q±b is the

activation energy for grain-boundary self-diffusion, R is the gas constant, and T is the tempera-

ture. Q±b is∼ 0.7×Q±v (Cuffey and Paterson, 2010, p. 40) and, similarly to the activation energy

for volume self-diffusion, Q±b = Q+
b = 81kJmol−1 for T ≥ T? and Q±b = Q−b = 42kJmol−1 for T < T?

(Table 3.1). Extrinsic materials, such as dust particles, reduce the rate of boundary migration and

can be described by a drag force on the boundary (Alley and others, 1986). This drag effectively

reduces the grain-growth factor K. We list the values used for these constants in Table 3.1.

Normal grain growth is then implemented by growing the diameter of the grain, D, according

to Eqn (3.10). We reset the growth law after each recrystallization, such that t0 and D0 are the time

and size immediately after the recrystallization.

Polygonization

Under the tripartite paradigm, a stable grain size is typically reached, even though grains con-

tinue growing through time and depth, because polygonization counteracts normal grain growth.

Polygonization creates new grain boundaries within large ice grains, effectively dividing the grain

in two. Large grains can become highly strained and experience differential stress, which is re-

lieved by the organization of dislocations into sub-grain boundaries (Alley, 1992). De La Chapelle

and others (1998) determined that the minimum dislocation density needed to form a sub-grain

boundary is, ρp = 5.4×1010 m−2.

Because polygonization depends on reaching a minimum dislocation density, the rate of poly-

gonization can be indirectly described through the dislocation density’s rate of change. The dis-

location density changes due to two dominant processes: it increases due to work hardening and

decreases due to the absorption of dislocations by the grain boundary (Miguel and others, 2001).

Therefore, the change in a grain’s dislocation density can be described as
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dρ

dt
=
||ε̇̇ε̇ε||
bD
−αρ

K
D2 , (3.12)

where the first term on the right describes work hardening: ||ε̇̇ε̇ε|| is second invariant of the strain

rate tensor, b is the length of the Burgers vectors, and D is the grain diameter (Montagnat and

Duval, 2000). The second term describes the absorption of dislocations by the grain boundaries, α

is an adjustable constant and K is the grain-growth factor.

We implement polygonization such that once the minimum dislocation density is reached,

a grain experiencing a differential stress may polygonize. Because our nearest-neighbor inter-

actions only modify the RSS and cannot directly apply a differential stress, we use a proxy for

differential stress on a grain (Thorsteinsson, 2002). Grains that have a small amount of the applied

stress resolved onto the basal plane (RSS) will likely be experiencing a differential stress from their

neighboring grains which are deforming. Specifically, if the ratio of the magnitude of the RSS, T ,

to the second invariant of the applied stress, ||σ′σ′σ′||, is less than a given value, T /||σ′σ′σ′||< δ, and the

dislocation density, ρ, in the grain is sufficient to form a sub-grain wall ( ρ > ρp), then the grain

will polygonize. When a grain polygonizes, the orientation is changed by an angle, ∆θ, in a direc-

tion that increases the RSS, the grain size is halved, and the dislocation density is reduced by ρp.

Values for these parameters are listed in Table 3.1. Polygonization tends to slow the development

of fabric because grains that are oriented very close to the preferred orientation (small RSS) of the

fabric will polygonize preferentially by the selection criteria. Because polygonization rotates the

grains away from the preferred orientation, this process tends to weaken the fabric.

Migration recrystallization (SIBM-N)

According to the tripartite paradigm, through most of the depth of an ice sheet, the rate of fabric

evolution is controlled by a balance between the grain growth, polygonization, and grain rota-

tion processes. However, migration recrystallization dominates fabric evolution at high temper-

atures (typically > −10◦C; Duval and Castelnau, 1995). Migration recrystallization occurs when

the stored strain energy (due to dislocations) in a grain is greater than the grain-boundary energy

of a new strain-free grain. This new strain-free grain rapidly grows at the expense of the old grain

(Duval and Castelnau, 1995). The stored energy due to dislocations, Ed, can be estimated as

Ed ' µρGb2 ln
(

Re

b

)
, (3.13)
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where µ is a constant, G is the shear modulus, and Re is the mean average of the dislocation strain

field range (Thorsteinsson, 2002). The energy associated with grain boundaries, Ec, is

Ec =
3γg

D
, (3.14)

where γg is the energy per unit area on the boundary (for high-angle boundaries). When Ed >

Ec it is energetically favorable to nucleate a new grain, which quickly grows to a diameter that

scales with the effective stress, due to a balance between nucleation of grains and grain-boundary

migration (e.g., Shimizu, 2008). The nucleated grain that grows most rapidly will be the one in the

most energetically favorable position: about halfway between the compressional and tensional

axes, which maximizes the resolved shear stress on the basal planes, causing them to deform

easily (Alley, 1992). For uniaxial compression or pure shear, for example, this is 45◦ from the axis

of compression, while for simple shear, it is 45◦ from the principal stress axis (Figure 3.3). The

new grain is initially strain free and has a much lower strain energy than the surrounding grains,

allowing it to grow. As the new grain grows preferentially at an orientation favorable for the bulk

deformation (highest RSS), the fabric can change significantly when there are large numbers of

migration recrystallization events.

We implement migration recrystallization by immediately creating a new grain when the dislo-

cation energy, Ed, exceeds the boundary energy, Ec (Eqn (3.13) and (3.14)). An old grain is replaced

with a new ‘strain-free’ grain that has a dislocation density ρ0 and a diameter that scales with

the effective stress, D ∼ (σ′klσ
′
kl/2)−2/3 (Thorsteinsson, 2002; Shimizu, 2008). We assume the grain

grows fast enough to reach a diameter of D within a single time-step. The new grain is given the

orientation with the highest RSS (or softest orientation; Figure 3.3), taken from a random distribu-

tion of 50 orientations in the applied stress state (Thorsteinsson, 2002).

Lattice rotation

If the surrounding ice is fixed, each grain rotates as it deforms, according to the standard contin-

uum mechanics rotation rate tensor:

Ω̇̇Ω̇Ω
p =

1
2

[
Lc− (Lc)T

]
, (3.15)

where Ω̇̇Ω̇Ωp is the rotation rate of a single grain and Lc is the velocity gradient of a grain in response

to stress from Eqn (3.4). If the surrounding ice is rotating within the frame of reference, however,

the model calculates a relative grain rotation rate:

68



0 2 4 6 8 10
Σ

k = -2.0, N = 8 k = -2.4, N = 8

k = -2.0, N = 8000

(e1 = 0.538)

k = -2.4, N = 8000

(e1 = 0.567)

Figure 3.4: Contoured Schmidt plot of the initial fabrics for both the constant-stress and
Taylor Dome experiments. The fabrics are contoured at levels of 0,2Σ, ...,10Σ. Σ is the stan-
dard deviation of the density of grains from the expected density for isotropic ice (Kamb,
1959). The upper two are contour plots of the continuous Watson distribution (an infinite
number of grains) with concentration parameters k = −2.0 (left) and k = −2.4 (right). Two
random 8000-grain fabrics generated from the upper Watson distributions are depicted in
the lower two plots. The fabric generated from the k =−2.0 and k =−2.4 distributions have
eigenvalues of e1 = 0.538 and e1 = 0.567, respectively.

Ω̇̇Ω̇Ω
∗ = Ω̇̇Ω̇Ω

b− Ω̇̇Ω̇Ω
p , (3.16)

where Ω̇̇Ω̇Ωb is the bulk rotation rate of the modeled ice in response to stress. The new orientation of

the grain is then

~c ′ = (I + tΩ̇̇Ω̇Ω∗)~c . (3.17)

3.5 Experimental setup

The model domain is a 24000 grain cuboid that is 20 grains wide, 20 grains deep, and 60 grains

high (Figure 3.1). The cuboid is split into three vertically layered cubes of 8000 grains each and the
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middle layer is initialized with a different fabric to the top and bottom layers. Each layer of the

initial fabric is generated using a Watson distribution (Kennedy and others, 2013). The top and

bottom layers have a concentration parameter for the Watson distribution of ktb =−2.0. This results

in a vertical single-maximum fabric, where the largest eigenvalue of the second-order orientation

tensor is etb
1 = 0.538. The middle layer has a stronger fabric, with a concentration parameter of km =

−2.4 (em
1 = 0.567). These concentration parameters are characteristic of ice fabrics found near the

firn-ice transition in polar ice sheets, and correspond to fabrics at ∼ 100m depth in Taylor Dome,

East Antarctica (Kennedy and others, 2013), and to < 500m depth at Dome C, East Antarctica

(Wang and others, 2003; Durand and others, 2009). We measure the fabric variation through time

by calculating the difference in the fabric e1 eigenvalues between the middle and top (or bottom)

layers: ∆e1 = em
1 − et

1. e1 will best represent single-maximum-type grain distributions typically

found in ice sheets. Initially, ∆e1 = 0.029. A contoured Schmidt plot of the initial fabrics is shown

in Figure 3.4.

Over time, as the cuboid is stressed, ∆e1 will change and may become smaller than the un-

certainty in eigenvalues, due to under-sampling the distribution with a finite number of grains.

Durand and others (2006a) found the maximum under-sampling error to be δ = 0.004 for a distri-

bution with 8000 grains. For this study, we consider the minimum separation resolvable above the

error in the eigenvalue calculation to be twice the maximum error: 2δ≈ 0.01. The fabric variation

is then preserved, as long as ∆e1 > 0.01. In situ, the minimum separation required to measure a

fabric anomaly will depend on the measurement technique, the number of grains sampled, and

the assumed in situ distribution of orientations.

To model how our fabrics respond to stress, we apply a constant temperature, T, and constant

deviatoric stress, σ′σ′σ′, at each time-step. The basic stress states within an ice sheet are uniaxial

compression, pure shear, and simple shear. The deviatoric-stress tensor for uniaxial compression

has the form

σ
′

σ
′

σ
′
u =


1
2 σ′u 0 0

0 1
2 σ′u 0

0 0 −σ′u

 , (3.18)

the deviatoric-stress tensor for pure shear has the form
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σ
′

σ
′

σ
′
p =


σ′p 0 0

0 0 0

0 0 −σ′p

 , (3.19)

and the deviatoric-stress tensor for simple shear has the form

σ
′

σ
′

σ
′
s =


0 0 σ′s

0 0 0

σ′s 0 0

 . (3.20)

We use σ′u,p,s of 0.01MPa and 0.04MPa to provide a lower and upper bound on the characteristic

deviatoric stresses typically found in ice sheets (Pettit and Waddington, 2003). The model cal-

culates a strain rate at each time-step, ε̇̇ε̇εm
i , and then the fabric is evolved for the amount of time

required to achieve a strain-step of 0.001, ti. The total bulk strain undergone by the modeled ice is

then εεε = ∑ε̇̇ε̇εm
i ti.

Ice in the vicinity of an ice divide will typically experience a regime of compressive stress

before experiencing significant shear stress and, for simple ice-sheet geometries, simple-shear

stresses are most important in the bottom half of the ice sheet (Cuffey and Paterson, 2010). There-

fore we apply a constant compressive stress regime (R1) to the modeled ice up to a total bulk

strain of εεεR1. We then apply a constant-shear-stress regime (R2) to the modeled ice up to a total

bulk strain of εεεR2. The shear-stress regimes consist of simple shear alone, a combination of simple

shear and pure shear, or a combination of simple shear and uniaxial compression (Table 3.2).

Kennedy and others (2013) showed that the separation in eigenvalues between the fabric layers

drops below 0.01 after 0.30 bulk strain in our model when undergoing uniaxial compression and

pure shear. Simple shear, however, causes the fabric to rotate into a ‘soft’ orientation rather than a

‘hard’ orientation. Because the rate of grain rotation depends on the velocity gradient, the stronger

fabric (soft in simple shear) will evolve more quickly than the weaker fabric (hard in simple shear).

Therefore, the fabric separation between layers can increase in simple shear as the fabric evolves

with each time-step. This will cause fabrics to maintain their separation to a higher modeled bulk

strain than 0.30. However, after 0.35 strain in our model runs dominated by high magnitudes of

uniaxial compression or pure shear, the time-step necessary for a 0.001 strain-step has increased by

over three orders of magnitude due to stress hardening. Further evolution becomes computation-

ally impractical, because time-steps that result in realistic amounts of recrystallization become too

small. We therefore set εεεR2 = 0.35 in our model to capture the possible enhancement of the eigen-
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Table 3.2: Stress regimes, stress magnitude, nearest-neighbor interaction parameters, and
temperature values used in the constant-stress experiments. Two hundred and eighty-
eight model runs were computed, where each run used a permutation of the listed values.
σ′u indicates uniaxial compression, σ′p indicates pure shear, and σ′s indicates simple shear
(Eqn (3.18)–(3.20)).

R1→ R2 σ′u,p σ′s NNI [ζ,ξ] T
MPa MPa ◦C

σ′σ′σ′p→σ′σ′σ′p 0.01 0.01 None [1,0] −30
σ′σ′σ′u→σ′σ′σ′u 0.04 0.04 Mild [6,1] −15
σ′σ′σ′p→σ′σ′σ′s Full [1,1] −10
σ′σ′σ′u→σ′σ′σ′s −5
σ′σ′σ′p→σ′σ′σ′s +σ′σ′σ′p
σ′σ′σ′u→σ′σ′σ′s +σ′σ′σ′u

value separation between fabric layers due to simple shear, but do not evolve the fabric further

to avoid excessively large time-steps. Kennedy and others (2013) found that for dome-like and

ridge-like ice sheets, 0.30 modeled bulk strain corresponds to evolution through ∼ 200ka while

∼ 0.20 bulk strain was ∼ 100ka. We then set εεεR1 = 0.20 so that εεεR1 corresponds to about half of our

fabric evolution time.

3.6 Results and discussion

We evolve the layered fabric shown in Figure 3.4 through each of the 288 permutations of the

stress style, stress magnitudes, nearest-neighbor interaction parameters, and temperature values

shown in Table 3.2. Figure 3.5 shows a contoured ternary plot of the eigenvalues for every time-

step of all 288 model runs. The fabrics all evolve towards the expected single-maximum-type

fabrics found in ice sheets. The layered fabric initially has an eigenvalue separation of ∆e1 = 0.029

between the top/bottom layer and the middle layer. The total amount of strain where ∆e1 is greater

than the under-sampling error (0.01) depends on the rates and magnitudes of these competing

processes: grain rotation; nearest neighbor interactions; the stress regime and the resulting amount

of recrystallizations.

We focus on the results that best illustrate the effects of simple shear, temperature, and nearest-

neighbor interactions on the eigenvalue separation. Because each of these processes affect the rate

and type of recrystallization events, recrystallization is discussed throughout.
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Figure 3.5: Contoured ternary plot of the eigenvalues of the fabrics for every time-step of
all 288 model runs. Because by definition e1 > e2 > e3, only 1/6 of the equilateral trian-
gle is used. The fabric density, ρf has been normalized by the maximum fabric density
(ρf/max(ρf )). Example Schmidt plots show the fabrics with the eigenvalues directly adja-
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Figure 3.6: The effects of simple shear on the evolution of the layered fabric (Figure 3.4).
The fabric was evolved at −30◦C with mild NNI ([ζ,ξ] = [6,1]; Eqn (3.6)) and low stress
magnitudes (σ′u,s = 0.01MPa) for the stress regimes (R1 → R2) of: uniaxial compres-
sion only ( σ′σ′σ′u → σ′σ′σ′u, black curves), uniaxial compression to simple shear (σ′σ′σ′u → σ′σ′σ′s,
dark gray curves), and uniaxial compression to uniaxial compression plus simple shear
(σ′σ′σ′u → σ′σ′σ′u + σ′σ′σ′s, light gray curves). a shows the ∆e1 eigenvalue separation between the
top/bottom and middle fabric layers. The horizontal dashed curves indicates the under-
sampling error threshold, where ∆e1 may not be resolvable. b-d show the fabric evolution,
the cumulative percent of grains that have undergone migration recrystallization, and the
cumulative percent of grains that have undergone a polygonization event, respectively.
Solid curves indicate the top/bottom layer while thick dashed curves indicate the middle
later. In all plots, light gray vertical lines mark the change from R1 to R2.

3.6.1 Simple shear

Figure 3.6 shows the evolution of the fabric for the stress regimes (R1→ R2) of: uniaxial compres-

sion only (σ′σ′σ′u→ σ′σ′σ′u); uniaxial compression to simple shear (σ′σ′σ′u→ σ′σ′σ′s) and uniaxial compression

to uniaxial compression plus simple shear (σ′σ′σ′u → σ′σ′σ′u + σ′σ′σ′s). The fabrics were evolved at −30◦C

with mild NNI ([ζ,ξ] = [6,1]; Eqn (3.6)) and low stress magnitudes (σ′u,s = 0.01MPa).
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In the σ′σ′σ′u→σ′σ′σ′s model run, the eigenvalue separation, ∆e1, remains above the under-sampling

error for the entire experiment. When compared with the σ′σ′σ′u → σ′σ′σ′u run, the fabric evolution is

slowed, polygonization events happen less frequently, and there is some migration recrystalliza-

tion (SIBM-N) happening at high modeled bulk strains (> 0.30). The fabric evolution is slowed

down because at 0.20 modeled bulk strain, the fabrics are already mostly concentrated near verti-

cal and the grains at the periphery of the distribution are now in the hardest orientation in simple

shear (Figure 3.3). These peripheral grains rotate towards the vertical slowly, causing e1 to increase

slowly. Likewise, the polygonization frequency is reduced because the grains in a hard orienta-

tion in simple shear (and therefore likely to be experiencing a bending moment; T /||σ′σ′σ′|| < δ, see

the Classical Polygonization section above) have not yet undergone enough modeled deformation

to have a high dislocation density. The grains that have a high dislocation density are very close

to vertical and located in a soft orientation (therefore unlikely to be experiencing a bending mo-

ment). Further, migration recrystallization events happen at the high modeled bulk strains for

this run because the soft grains that already have a high dislocation density increase their dislo-

cation density further, to the point where migration recrystallization is possible even at such low

temperatures. This agrees with observations by Kipfstuhl and others (2009), which showed that

recrystallization can be active at much lower temperatures than previously suggested. Because

grains that undergo migration recrystallization are given a random orientation with a high RSS,

they are likely to end up with an orientation either close to vertical or close to the direction of

shearing (Figure 3.3). The grains that end up pointing close to vertical will not strongly affect

the fabric eigenvalues, as they stay within the vertically-clustered distribution. The fabric in the

σ′σ′σ′u→ σ′σ′σ′s model run remains largely unaffected by the low number of migration recrystallization

events.

In the σ′σ′σ′u → σ′σ′σ′u +σ′σ′σ′s model run, ∆e1 remains above the under-sampling error to just slightly

higher modeled bulk strains than in the σ′σ′σ′u → σ′σ′σ′u run. Simple shear does not slow the fabric

evolution in this case because the majority of grains will have a large RSS (Figure 3.3), causing a

rapid evolution of the fabric to the point where the fabric is too strongly orientated to maintain

much separation. Both polygonization and migration recrystallization are active in this model run,

due to the high RSS, which causes high modeled strain rates and a rapid buildup of dislocations. In

this stress state, migration recrystallization will grow grains in almost any orientation. However,

these grains will rapidly rotate to a vertical orientation and the rate of migration recrystallization

events seen here does not change the fabric eigenvalues.
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Figure 3.7: The effects of simple shear on the evolution of the layered fabric (Figure 3.4)
eigenvalue separation between the top/bottom and middle fabric layer. The fabric was
evolved at −30◦C with mild NNI ( [ζ,ξ] = [6,1]; Eqn (3.6)) in every permutation of the
stress regimes (R1→ R2) and stress magnitudes (σ′u,p,s) shown in Table 3.2. Black curves
indicate runs that started with uniaxial compression, σ′σ′σ′u, while gray curves indicate runs
that started with pure shear, σ′σ′σ′p,. a shows runs with a low stress magnitude initially (σ′u,p =
0.01MPa) while b shows a high stress magnitude initially (σ′u,p = 0.04MPa ). In both plots,
the horizontal dashed line indicates the under-sampling error threshold, where ∆e1 may
not be resolvable and light gray vertical lines in both plots mark the change from R1 to R2.
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Figure 3.8: The effects of nearest-neighbor interaction (NNI) on the evolution of the lay-
ered fabric (Figure 3.4). The fabric was evolved at T =−30◦C with each of the NNIs shown
in Table 3.2. a-d show the evolution of uniaxial compression only (σ′σ′σ′u → σ′σ′σ′u) with a low
stress magnitude (σ′u = 0.01MPa) and e-h show the evolution of uniaxial compression plus
simple shear ( σ′σ′σ′u→ σ′σ′σ′u +σ′σ′σ′s) with a low stress magnitude (σ′u,s = 0.01MPa). Black curves
indicate no NNI ([ζ,ξ] = [1,0]; Eqn (3.6)), dark-gray curves indicate mild NNI ([ζ,ξ] = [6,1]
), and light-grey curves indicate full NNI [ζ,ξ] = [1,1]. a and e show the ∆e1 eigenvalue
separation between the fabric’s top/bottom and middle layers and horizontal dashed lines
indicate the under-sampling error threshold where ∆e1 may not be resolvable. b-d and f-h
show the fabric evolution, the cumulative percent of grains that have undergone migration
recrystallization, and the cumulative percent of grains that have undergone a polygoniza-
tion event, respectively. Solid curves indicate the fabrics top/bottom layer and dashed
curves indicate the middle layer. In all plots, The light gray vertical lines mark the change
from R1 to R2.
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Figure 3.7 shows the ∆e1 evolution for all model runs at −30◦C with mild NNI (every permu-

tation of stress and stress magnitude shown in Table 3.2). In all cases, simple shear stress causes

the modeled bulk strain at which the eigenvalue separation stays above the under-sampling error

(∆e1 > 0.01) to either remain the same (once) or increase (15 times).

3.6.2 Nearest neighbor interaction

Figure 3.8 shows the repeated evolution of the same layered fabric with no NNI ([ζ,ξ] = [1,0];

Eqn (3.6)), mild NNI ([ζ,ξ] = [6,1]), and full NNI ([ζ,ξ] = [1,1]) in the two stress regimes of uniax-

ial compression only (σ′σ′σ′u→σ′σ′σ′u; Figure 3.8a–d) and uniaxial compression to uniaxial compression

plus simple shear (σ′σ′σ′u → σ′σ′σ′u +σ′σ′σ′s; Figure 3.8e–h). The fabric was evolved using T = −30◦C and

low stress magnitudes (σ′u,s = 0.01MPa) for both the stress regimes. Higher amounts of NNIs re-

duce the fabric separation at earlier modeled bulk strains. This happens because nearest-neighbor

interactions minimize the modeled strain-rate differences between neighboring grains, such that

the grains tend to evolve towards vertical more slowly. This causes the grains to spend more time

in a higher strain-rate orientation, which increases the dislocation density. A higher dislocation

density allows the recrystallization processes to happen at an earlier modeled bulk strain. Poly-

gonization then slows the fabric evolution by moving grains away from vertical. This affects the

stronger fabric preferentially, as it has more hard grains that are prone to polygonization. There-

fore, higher levels of NNIs decrease the modeled bulk strain at which ∆e1 remains > 0.01.

3.6.3 Temperature

Figure 3.9 shows the repeated evolution of the same layered fabric for the temperatures of T =

−30,−15,−10,−5◦C in the two stress regimes of uniaxial compression only (σ′σ′σ′u→σ′σ′σ′u; Figure 3.9a–

d) and uniaxial compression to uniaxial compression plus simple shear (σ′σ′σ′u→σ′σ′σ′u +σ′σ′σ′s; Figure 3.9e–

h). The fabric was evolved using mild NNI ([ζ,ξ] = [6,1]; Eqn (3.6)) and low stress magnitudes

(σ′u,s = 0.01MPa) for both the stress regimes. The results from these runs fall into two sets: T =

−30,−15◦C and T = −10,−5◦C. The evolution of the fabric does not differ significantly within a

set, but there is a large change in the fabric evolution between the sets, due to the step change in

the activation energy Qb (Eqn (3.11), Table 3.1). At any given modeled bulk strain, the change in

activation energy results in a decrease in the eigenvalue separation, ∆e1, a slow down of the e1 evo-

lution, and an increase in the polygonization events. Temperature, therefore, does not change the

fabric evolution in the modeled bulk strain, except when crossing the activation energy threshold.
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Figure 3.9: The effects of temperature on the evolution of the layered fabric (Figure 3.4).
The fabric was evolved with mild NNI ([ζ,ξ] = [6,1]; Eqn (3.6)) in each of the tempera-
ture regimes shown in Table 3.2 (T = −30,−15,−10,and− 5◦C). a-d show the evolution
of uniaxial compression only (σ′σ′σ′u → σ′σ′σ′u ) with a low stress magnitude (σ′u = 0.01MPa)
and e-h show the evolution of uniaxial compression plus simple shear ( σ′σ′σ′u → σ′σ′σ′u + σ′σ′σ′s)
with a low stress magnitude (σ′u,s = 0.01MPa). The black dashed curves indicate tempera-
tures of T = −30◦C, the solid dark-gray curves indicate T = −15◦C, the dashed dark-gray
curves indicate T = −10◦C, and the light-gray curves indicate T = −5◦C. a and e show
the ∆e1 eigenvalue separation between the top/bottom and middle fabric layers, and the
horizontal dashed line indicates the under-sampling error threshold where ∆e1 may not
be resolvable. b-d and f-h shows the fabric evolution, the cumulative percent of grains
that have undergone migration recrystallization, and the cumulative percent of grains that
have undergone a polygonization event, respectively. The light gray vertical lines in all
plots mark the change from R1 to R2.
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Figure 3.10: The total simulation time to evolve the fabric to 0.35 bulk strain for our differ-
ent model runs. Time is shown on a logarithmic scale. Black symbols indicate runs with
low stress magnitudes (σ′u,p,s = 0.01MPa) and gray symbols indicate runs with high stress
magnitudes (σ′u,p,s = 0.04MPa).

Nevertheless, because ice at a warmer temperature has a larger flow parameter (A(T), Eqn (3.4)),

the ice will deform more quickly at higher temperatures. The actual time required for the modeled

ice to reach any given bulk strain will then be shorter at higher temperatures. This also means that,

for model runs that drop below an e1 separation of 0.01 at the same modeled bulk strain, the actual

time elapsed will be much shorter for runs at high temperatures (Figure 3.10). Critically, migration

recrystallization (SIBM-N) events are reduced for a given modeled bulk strain at the higher tem-

peratures because of the very large number of polygonization events (which both depend on and

reduce the dislocation density). Yet, because the actual time required to reach any given modeled

bulk strain will be shorter, the earlier onset of migration recrystallization for higher temperatures

still holds true.

3.6.4 Further discussion

In all of our experiments, a variation in fabric is either preserved or enhanced under shear stresses.

There is a ‘window of opportunity’ in which the separation of eigenvalues is sufficient to observe

the variation before the fabric becomes too strongly oriented to maintain much separation. The

length of time this window is open depends on the magnitude of the initial fabric variation, the

initial strength of the weaker fabric, the magnitude of the applied stress, the strength of the nearest

neighbor interactions, and the resultant number of recrystallization events. If the initial fabric

variation is sufficiently large, the weaker initial fabric controls the time the window is open –
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Figure 3.11: Sensitivity to the model parameters (Table 3.1). a-d show the result of varying
the thermal activation energy, Q, at T =−30◦C and e-h the result of varying the dislocation
energy constant, µ, at T = −5◦C. Dark-gray curves indicate the control run while black
curves indicate a 10% increase in the parameter values and the light-gray curves indicate
a 10% decrease in the parameter values. a and e show the ∆e1 eigenvalue separation be-
tween the fabrics top/bottom and middle layers and horizontal dashed lines indicate the
under-sampling error threshold where ∆e1 may not be resolvable. b-d and f-h shows the
fabric evolution, the cumulative percent of grains that have undergone migration recrys-
tallization, and the cumulative percent of grains that have undergone a polygonization
event, respectively. Solid curves indicate the fabrics top/bottom layer and dashed curves
indicate the middle layer. In all plots, the light gray vertical lines mark the change from R1
to R2.

81



the window closes as the weaker fabric reaches the maximum fabric strength (the stronger fabric

reaches the maximum fabric strength before the weaker fabric).

By finding the modeled strain (and therefore time) at which the e1 separation is < 0.01, we can

determine how long the window stays open. Our model results suggest that the window will stay

open at least through 0.3 modeled bulk strain in most of the modeled constant-stress regimes, and

shear stress will keep the window open well past 0.35 modeled bulk strain. The total simulated

time for any particular run is shown in Figure 3.10 and range from a few hundred years in the

warmest, highest stress cases to a few hundred thousand years in the coldest, lowest stress cases

(typical of an ice divide).

However, the parameter values in Table 3.1 may be different in situ, because we are not mod-

eling a specific glacier. In order to test the sensitivity of our model to these parameters, we ran a

variety of experiments varying parameters with an increase or decrease of 10%. We tested changes

in the isotropic ice softness by varying (1) β (Eqn (3.4)); the grain growth (which influences the

change in dislocation density and the rates of polygonization and SIBM-N) by varying (2) the in-

trinsic grain growth factor, K0, and (3) the thermal activation energy, Q (Eqn (3.11) and (3.12)); and

the migration recrystallization (SIBM-N) threshold by varying (4) the dislocation energy constant,

µ (Eqn (3.13)). These four parameters together allow us to vary all the processes captured in our

model. For each parameter, we computed a set of model runs at T = −30◦C, low uniaxial com-

pression, low shear stress, and mild nearest-neighbor interactions. We computed another set of

model runs at T =−5◦C with the same stresses and nearest-neighbor interaction. Each set consist

of a control run, a run with a 10% increase in the parameter, and a run with a 10% decrease in

the parameter. In total, we computed runs for four parameters, each in two temperature regimes,

with three values for the parameters for 24 more model runs.

Most of the model runs are not presented here as they show only negligible effects on the fabric

evolution (the changes are smaller than the width of the plot lines). The only significant changes in

results we see occur when varying the thermal activation energy, Q, at T =−30◦C (Figure 3.11a–d)

and when varying the dislocation energy constant, µ, at T =−5◦C (Figure 3.11e–h). An increase in

the thermal activation energy at T = −30◦C caused more polygonization events, fewer migration

recrystallization events and a slower fabric evolution (Figure 3.11b–d). However, because these

changes are small, the e1 separation is negligibly effected (Figure 3.11a). Decreasing the activation

energy, on the other hand, had negligible effects.

Increasing the dislocation energy constant (Figure 3.11g), causes a small increase in migration

recrystallization events and, likewise, a small decrease in migration recrystallization events when
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the dislocation energy constant was decreased. Despite this change in migration recrystallization,

the fabric evolution, polygonization, and e1 separation were negligibly affected (Figure 3.11e, f

and h). Therefore, we conclude that our model is insensitive to small changes in parameter values

and the conclusions presented above are robust.

It should also be noted that the fabric eigenvalues are not a complete description of the ice

and layers with the same eigenvalues may have different distributions of dislocation densities. It

is possible for a fabric that has evolved to its maximum e1 eigenvalue and/or lost the distinction

between its layers (∆e1 < 0.01) to have its layers separate again due to different levels of recrystal-

lization. We did not observe this re-separation in any of our model runs, but it may be seen with

fabrics evolved to higher bulk strains than were modeled.

3.7 Conclusions

Our model predicts that for constant shear-stress regimes, modeled bulk strains > 0.35 (for time,

see Figure 3.10) are necessary to rid glacial ice of its past ‘memory’ of fabrics and stress states.

In our model, shear stress preserves a subtle variation in fabric longer than in compressive stress

regimes and may act to enhance the fabric variation in certain stress regimes by rotating grains

into softer orientations and reducing the number of polygonization events.

Our model further predicts that temperature does not affect the modeled bulk strain at which

the fabric variation is sufficient to be observed, except when crossing a thermal activation energy

threshold. The model shows that the much higher levels of recrystallization observed in warm,

fast-flowing ice is balanced by the increased modeled strain rates and grain rotation, such that

the fabric variation may be observable past 0.35 modeled bulk strain. For any combination of the

modeled stresses or temperatures, migration recrystallization (SIBM-N) does not rid the modeled

fabric of its memory. However, using higher amounts of nearest-neighbor interactions within the

model reduces the fabric variation for a given modeled bulk strain.

We therefore conclude that a fabric variation below the firn-ice transition, can be preserved in

polar ice sheets. Because the microstructural processes active in the firn layer are dependent on

climate variables, it is possible that the fabric variations arise from climate variations. In order

to quantify the effects of climatic changes on the microstructure evolution in the firn layer, more

work is needed. A microstructure model that is able simulate multiple fabrics with a statistically

relevant number of grains, that captures the dynamics in the firn and ice region, and is coupled to

a flow model, is needed.
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Chapter 4

PISM-FEvoR: a multi-scale ice flow model incorporating fabric evolution with

recrystallization 1

4.1 Abstract

The deformation of ice within an ice-sheet is anisotropic when there is a preferred orientation to

the ice crystallites (grains) due to the strong anisotropy of the crystalline lattice. This preferred

orientation (often termed fabric) is widely observed in ice-sheets. In recent years there has been

significant effort to connect polycrystalline fabric evolution models with ice-sheet flow models to

better account for the anisotropic response of ice to stress. These resulting ice-sheet models, such

as the CAFFE (Placidi and others, 2010) and GOLF (Gillet-Chaulet and others, 2005) models,

use external polycrystalline fabric models to tune microstructural parameters which control the

fabric development and recrystallization equations. Because these ice-sheet models do not directly

include the fabric models, they assume the evolution equations for the microstucture are steady

over time.

We develop a combined polycrystalline-flow model (PISM-FEVOR), using the open-source

Parallel Ice Sheet Model (PISM) and the open source Fabric Evolution with Recrystallization poly-

crystalline model (FEVOR). PISM-FEVOR provides the first integrated flow-fabric model that ex-

plicitly computes the fabric evolution and includes all three major recrystallization processes –

grain growth, rotation recrystallization, and migration recrystallization. Because FEVOR is di-

rectly incorporated into PISM, PISM-FEVOR does not require steady material parameters. We

use PISM-FEVOR to model the evolution of a slab-on-slope glacier, initialized with a variety of

fabric profiles. PISM-FEVOR captures the flow enhancement due to fabric and we show that the

entire integrated fabric-flow history determines the final simulated flow. We provide a further,

independent validation of using an integrated fabric-flow model over a constant enhancement

factor in ice sheet models.

4.2 Introduction

An ice sheet is made up of an unfathomably large number of ice crystallites, or grains, which

determine its bulk material properties and overall response to stress. Thus the natural flow of

an ice sheet is a many-scale process. The deformation of a single ice crystal in response to stress

is governed by meso-scale (≈ nm) dynamics of lattice dislocations and is highly anisotropic. The

1This chapter is being prepared for submission to the Journal of Glaciology as Kennedy, J. H., Khroulev, C., and
Pettit, E.C. (In prep). PISM-FEvoR: a multi-scale ice flow model incorporating fabric evolution with recrystallization.
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deformation of polycrystalline ice (macro-scale;≈ cm−m) is a balance between lattice dislocation

dynamics, grain compatibility, and active recrystallization processes (micro-scale; ≈ µm). Further

up the scale, the emergent flow of an ice sheet (> km) is the integrated polycrystalline response to

stresses that arise from the overall ice sheet geometry. Understanding and connecting the many-

scale processes present in ice sheets is a complex task and an active area of research (see the re-

views by Montagnat and others, 2014; Faria and others, 2014a,b).

There are a number of micro-scale processes active within glaciers and ice sheets that affect the

fabric (grain orientation distribution) and texture (grain size and shape). In deforming ice (& 20m

depth; Faria and others, 2014b), fabric develops through lattice rotation by intra-crystalline slip in

response to stress (Azuma and Higashi, 1985; Alley, 1992). Dynamic recrystallization further influ-

ences the fabric and texture throughout the depth of an ice sheet. Dynamic recrystallization (DRX)

includes rotation recrystallization (RRX), where new grain boundaries are formed through the

progressive rotation of the crystalline lattice and the migration of sub-grain boundaries (of which

polygonization is a special case involving tilt boundaries). DRX also includes migration recrys-

tallization which involves strain-induced boundary migration (SIBM) from old/existing grains

(SIBM-O) and from nucleation of new grains (SIBM-N) (see Faria and others, 2014b, appendix A).

The growth of grains and the fabric strength are then emergent properties of these interdependent

processes.

Polycrystalline models take either a full-field or mean-field approach (e.g., Montagnat and

others, 2014). Full-field models simulate the full micro-mechanical fields and explicitly include

the recrystallization processes (Montagnat and others, 2014). Full-field approaches are complex

and are computationally limited to 2D simulations of a few hundred grains, though in princi-

ple could be applied across a full 3D (Becker and others, 2008). Mean-field models, on the other

hand, calculate the statistical response to stress of (mostly) independent crystallites to and average

their responses to determine the macroscopic response of the polycrystal. Mean field models can

contain phenomenological descriptions of dynamic recrystallization processes (e.g., Azuma, 1994;

Castelnau and others, 1996; Thorsteinsson, 2002). This approach is significantly less computation-

ally intensive and has been used to model tens of thousands of grains (Kennedy and others, 2013;

Kennedy and Pettit, 2015). However, fully incorporating a mean-field model into an ice-sheet scale

flow model, in order to resolve the microstructural physics, has remained outsides the bounds of

computational feasibility (Montagnat and others, 2014).
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Table 4.1: Notation. We will represent vectors as ~v with scalar elements vi, second rank
tensors as A with elements Aij, and fourth rank tensors as B with elements Bijkl. Tensor
operations follow the notation below, summing over repeated indices.

Tensor operations
A : B = c ⇔ AijBij = c
A⊗B = C ⇔ AijBkl = Cijkl

A : B = C ⇔ AijklBkl = Cij

In ice-sheet flow models, glacier ice was historically assumed to behave isotropically in re-

sponse to stress. Early field observations were well-described by what came to be known as the

Glen-Nye flow law (Glen, 1955; Nye, 1957):

ε̇̇ε̇ε = A(T)σn−1
e σσσ , (4.1)

where ε̇̇ε̇ε is the strain rate, A(T) is scalar softness parameter with an Arrhenius dependence on

the temperature T, σσσ is the applied deviatoric stress, σ2
e = (σσσ : σσσ)/2 is the effective stress, and n

is the stress exponent. Modern field measurements have shown some discrepancies with flow

predicted from the Glen-Nye flow law; much of which can be attributed to the fabric in the ice

sheet (e.g., Thorsteinsson and others, 1999). Because the development of fabric in ice sheets is

typically favorable for deformation (Hooke, 2005), it has become common to modify Eqn (4.1) with

a constant scalar enhancement factor E,

ε̇̇ε̇ε = EA(T)σn−1
e σσσ , (4.2)

where E typically takes on a value E ≥ 2 for ice undergoing shear, and can be as large as E = 12

in polar ice (Cuffey and Paterson, 2010, p. 77). The use of different enhancement factors for

different boundary stress regimes, however, suggests that a scalar enhancement factor does not

fully explain the effects of fabric on flow (Ma and others, 2010).

In recent years there has been significant effort put forth to connect polycrystal scale models

with ice-sheet scale flow models (see the review by Montagnat and others (2014)). Two mod-

els have come out of this effort, the Continuum-mechanical Anisotropic Flow model based on

an anisotropic Flow Enhancement factor (CAFFE; Placidi and others, 2010) and the General Or-

thotropic Linear Flow law (GOLF; Gillet-Chaulet and others, 2005).
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CAFFE is based on the theory of continuous diversity and uses an orientation dependent

density function (D) to update a scalar enhancement factor field E?(D) in the Glen-Nye flow law

(Eqn (4.2)). Because of the simple change to the flow law, The CAFFE model is easy to implement

in existing ice flow models and incorporates grain rotation, strain-induced lattice rotation, rotation

recrystallization as a diffusive process, and migration recrystallization as a dissipative process in

the evolution of the fabric. However, the material parameters controlling rotation recrystallization

and migration recrystallization are not easy to measure experimentally and must be determined

from in situ observations or a polycrystalline model (Placidi and others, 2010). Further, the evolu-

tion equations for the microstructure are steady over time, and therefore are unable to account for

any changes to the material parameters over time.

Alternatively, GOLF modifies the Glen-Nye flow law (Eqn (4.2)) to use six dimensionless vis-

cosities to calculate an orthotropic material response to stress. The viscosities are a function of

the second-order orientation tensor a(2) and are tabulated initially using a polycrystalline model.

a(2) is assumed to evolve solely by deformation and does not include recrystallization processes,

though could in principle include rotation recrystallization as a diffusive process and migration

recrystallization as a dissipative process similar to the CAFFE model. These recrystallization pa-

rameters would also need to be determined from the polycrystalline model used to tabulate the

six viscosities. Like CAFFE, these material parameters are steady in time.

In both the CAFFE and GOLF models, the fabric is described as a Eulerian fabric field, and

the fabric field is evolved both due to convection and the local stress balance. These kind of ap-

proaches are computationally efficient, but including time varying material parameters would

require the development of conservation equations for each parameter. The form these equations

may take is not obvious, and many possible solutions may exist that would need to be validated

against polycrystalline models and observations (Placidi and others, 2010; Montagnat and oth-

ers, 2014; Faria and others, 2014b). Alternatively, the fabric-field can be described by Lagrangian

particles, each of which contains its own polycrystalline model. This allows already validated

polycrystalline models to be used, and the ability to change the material parameters from particle

to particle. For example, particles could be seeded at the surface of an ice sheet over time and

given the material parameters existing at the time of their seeding. These parameters may be de-

rived from paleoclimate records (such as impurity concentration or grain size), and time-variant

material parameters can then be studied. This, however, will come at a large computational cost

as each particle must run its own polycrystalline model.
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Though no polycrystalline model has been incorporated into a full ice-sheet model, some

smaller scale attempts at integrating them (without recrystallization) have been made. For exam-

ple, Rudolph and Manga (2012) implemented a mean-field model (simplified from Thorsteinsson,

2001, 2002) into a finite-difference model of Galilean ice-shells. Using a 2D 41×41 Eulerian grid,

and a parallel solver, the inclusion of the mean-field model resulted in a 100× increase in runtime.

A fully integrated model, incorporating recrystallization, and capable of simulating fully 3D ice

sheets is our development goal.

Here, we present the beginnings of the integrated polycrystalline-flow model PISM-FEVOR

which combines the open source flow model PISM (Parallel Ice Sheet Model) with the open source

mean-field polycrystalline model FEVOR (Fabric Evolution with Recrystallization). Similar to

CAFFE, we calculate a scalar enhancement factor field (E?(σσσ)) which is dependent on the ap-

plied stress. Instead of using an evolution equation with tuned parameters from a polycrystalline

model, we run a number of FEVOR models directly within PISM to calculate E?(σσσ). Each FEVOR

model is contained within a trace particle which freely flows within the PISM model. E?
l (σσσ) is cal-

culated from each particle Pl, and E?(σσσ) is determined for the PISM ice domain. We are therefore

able to adjust material parameters from particle to particle.

We use PISM-FEVOR to investigate the evolution of fabric in a slab-on-slope glacier. By using

different initial fabric profiles within the slab, we show that we are able to model effects of fabric

on the overall flow field comparably to other fabric-flow models’ results. We also show that the full

fabric-evolution history affects the total flow achieved at the end of the simulation, and therefore

a constant scalar enhancement factor is inadequate to model the evolution of an ice sheet. This

further validates similar findings from both the CAFFE and GOLF models.

Importantly, we are focused here on model development. PISM-FEVOR is among the first

steps into the realm of directly integrating a polycrystal scale model within an ice-sheet scale flow

model, and we have necessarily used a simplified model domain. It will provide an open example

to the scientific community on how to tackle such an integration, and provide an avenue to fully

integrate a mean-field model into an ice-sheet model which can be used for complicated domains

such as Greenland and Antarctica.

4.3 FEVOR

To model the fabric evolution, we use the open-source Fabric Evolution with Recrystallization

(FEVOR) library developed at the University of Alaska Fairbanks (FEvoR, 2015). FEVOR is ac-

tively under development and based on the model described in Kennedy and others (2013) and
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Kennedy and Pettit (2015). FEVOR is a mean-field fabric evolution model in that it calculates

the average polycrystalline response from a distribution of (mostly) independent crystallites, or

grains. FEVOR modifies the Reuss model (uniform stress) through explicit nearest-neighbor inter-

actions between grains. Additional (slight) differences between the FEVOR library presented here

and the model in Kennedy and others (2013) and Kennedy and Pettit (2015) are detailed below.

Due to the strong anisotropic response of a grain to stress, deformation is restricted to the

basal planes, whose slip systems are described by the three Burgers vectors~b (s). The orientation

of a grain’s slip systems are then described by the three Schmidt tensors

S(s) =~b (s)⊗~c . (4.3)

where~c is the optical or c-axis the crystal and ⊗ is the vector direct (dyadic) product (Table 4.1).

The velocity gradient (Lc) of a grain in response to a stress can then be described by:

Lc = βA(T)(E c)n
∑
(s)
|S(s) : σσσ|n−1 S(s)(S(s) : σσσ) , (4.4)

where the super script c indicates a grain (crystallite) property, β is an adjustable constant to

control the isotropic ice softness, A(T) is the temperature dependent flow parameter from the

Glen-Nye flow law (Eqn (4.2); Cuffey and Paterson, 2010, p. 72), S(s) is the Schmidt tensor

which describes the orientation of the grain’s slip system (s), E c is the local softness parameter

due to nearest-neighbor interactions (NNIs), σσσ is the deviatoric stress tensor for the stress ap-

plied to the fabric, and n is the exponent in the Glen-Nye flow law (Eqn (4.2)). If we notice that

S(s)(S(s) : σσσ) = (S(s)⊗S(s)) : σσσ (see Table 4.1 for notation), we can rewrite Eqn (4.4) as:

Lc = βA(T)(E c)n
∑
(s)
|S(s) : σσσ|n−1 (S(s)⊗S(s)) : σσσ

= Mc(σσσ) : σσσ , (4.5)

where Mc(S(s),σσσ) is a fourth rank tensor, conceptually identical to the elasticity tensor, but in this

case is a nonlinear function of the stress tensor (Rudolph and Manga, 2012; Montagnat and others,

2014). Eqn (4.5) is used here, while Eqn (4.4) was used in Kennedy and Pettit (2015).
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The bulk velocity gradient, L, of a distribution of grains in response to stress is calculated

by applying a volume-weighted average (Gagliardini and others, 2004) to the individual grain

responses:

L = M(σσσ) : σσσ (4.6)

where

M(σσσ) =
N

∑
n=1

fnMc
n(σσσ) , (4.7)

N is the number of grains within a distribution,

fn =
D3

n

∑
N
m=1 D3

m
(4.8)

is a grain’s volume fraction, and Dn is the grain diameter.

The migration recrystallization computation has also been simplified. Previously, when a grain

underwent migration recrystallization, 50 random orientations (uniform on surface of S2) were

generated, and the recrystallized grain was given the orientation with the highest magnitude of

the resolved shear stress,

T =

∥∥∥∥∥∑(s)
τ

(s)~b(s)

∥∥∥∥∥ , (4.9)

where τ(s) are the components of stress resolved onto (s), and~b(s) is the Burgers vector for the slip

system (s). Schmidt plots of T for a variety of stress states are shown in Figure 4.1. Instead, FEVOR

now determines which component of the deviatoric stress tensor is dominant (max(|σ′ij|)). If shear

stresses are dominant, T is maximized near vertical (Figure 4.1) and the orientation is randomly

generated with a uniform probability on the conical section of S2 defined by θ ∈ [0,π/6] , and

φ ∈ [0,2π). If compressive stresses are dominant, T is maximized near the small circle 45◦ from

vertical (Figure 4.1) and the orientation is randomly generated with a uniform probability on the

section of S2 defined by θ ∈ [π/6,π/3], and φ ∈ [0,2π).

FEVOR can generate distributions of N orientations using the Watson orientation distribution

function as described in (Kennedy and others, 2013). The probability density of finding an orien-

tation~c for a Watson distribution with a principal axis~η is
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Figure 4.1: Contoured Schmidt plots of the magnitude of the Resolved Shear Stress T from
Eqn (4.9) for grains in the stress states of: uniaxial compression, pure shear, and simple
shear. The values have been normalized by the maximum value of T .

dw(~c) = a−1
w exp[−w(~η T~c)2] , (4.10)

where w ∈ [−∞,∞] is the concentration parameter and aw is the normalizing constant. Watson dis-

tributions are axial and defined on the entire unit sphere (S2). The Watson distribution describes

single maximum fabrics concentrated around ~η when w < 0, equatorial girdle fabrics around the

pole ~η when w > 0, and reduces to a random distribution when w = 0 (uniform on S2). FEVOR

uses the open-source FADDEEVA package to compute the Dawson’s function and error function

needed for generating Watson distributions (Johnson, 2012).

4.4 PISM

To model the ice flow, we use the open-source Parallel Ice Sheet Model (PISM, 2015). PISM is

well described in the literature (Bueler and Brown, 2009) and has been used in a wide variety of

applications; from coupled ice-sheet climate simulations (e.g., Ziemen and others, 2014) to deter-

mining basal yield stress in outlet glaciers (e.g., Habermann and others, 2013). In brief, PISM is a

fully parallelized, 3D ice-sheet model that uses the shallow ice approximation (SIA), the shallow

shelf approximation (SSA), or a hybrid SIA-SSA to solve the stress balance equations (Winkelmann
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and others, 2011) and uses an enthalpy formulation (Aschwanden and others, 2012) to model the

thermodynamic properties of flowing ice.

4.5 The integrated PISM-FEVOR model

In the PISM-FEVOR integrated model, PISM controls the ice flow, the domain, and the adaptive

time-stepping. PISM uses an Eulerian grid to compute the flow field. This grid also contains a

number of Lagrangian particles (Pl = (xl,yl,zl)), each containing a FEVOR distribution, which is

carried by the PISM flow field.

Within PISM’s explicit time-step, as outlined in the flow chart shown in Figure 4.2, PISM-

FEVOR uses trilinear interpolation (Figure 4.3) to calculate the temperature (Tl), stress (σσσl), and

velocity (~vl) at each particle position. To trilinearly interpolate values at a particle’s position, that

particle must be within the convex hull of the ice grid ( H g; Figure 4.4). Because the particles are

free to flow with the ice, decisions about particles that flow out of H g will need to be made, and

these decisions will be problem-dependent (see our experiment below).

The particle positions are updated within every PISM time-step using Euler’s method. Be-

cause the FEVOR model is the most computational intensive part of the PISM-FEVOR model,

FEVOR is stepped over a user-specified interval (∆tf ) that typically exceeds the PISM time-step

size. When the time at the end of the current PISM time-step is equal to the next FEVOR run

time (t+∆t = t+
f ), a FEVOR time-step is preformed, an enhancement factor (E?

l ) from each particle’s

distribution is calculated.

FEVOR is integrated into PISM’s shallow ice approximation (SIA) version of the stress balance

equations. In the SIA, the deviatoric stress tensor (σσσ′l(x,y,z)) only has non-zero components σ′13 =

σ′31 and σ′23 = σ′32 because the driving force of gravity is balanced exclusively by shearing within

the ice (Bueler and Brown, 2009). We calculate two enhancement factors

Ei3
l =

|(ε̇i3)l|
|(ε̇i3)iso|

, i = 1,2 (4.11)

where (ε̇i3)l is the strain rate component for the particle Pl, and (ε̇i3)iso is the strain rate component

for an isotropic FEVOR distribution experiencing the same temperature and stress as Pl. Then

E?
l = max{E13

l ,E23
l }, but we set a minimum enhancement factor of 1 because the applied stress may

be zero and a maximum enhancement of 10 (Cuffey and Paterson, 2010, p. 77), so 1≤ E?
l ≤ 10.

Once the particle enhancement factors are calculated, enhancement factors are determined

for the regular PISM grid points (E?
xyz) from the particles using natural neighbor interpolation
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Figure 4.2: Flow chart of the combined PISM-FEVOR model. At each time-step, the 3D
velocity~vxyz, stress σσσxyz, and temperature Txyz fields are trilinearly interpolated (Figure 4.3)
at particle positions Pl. The particle positions are updated using the Euler method. FEVOR
is stepped over a user-specified interval when the time at the end of the current PISM
time-step is equal to the next FEVOR run time (t+∆t = t+

f ). An enhancement factor for each
particle (E?

l ) is calculated. Using natural neighbor interpolation (Figure 4.5), enhancement
factors are calculated for each grid point (E?

xyz), which are then used to finish the PISM
time-step and update the ice geometry.
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Figure 4.3: Geometric visualization of bilinear interpolation from a regular grid (black)
to a particle (pink). The weight (wi) of a value at grid point i is equal to the fractional
area (outlined by dashed lines) of the interpolation rectangle (light green) opposite point i.
Trilinear interpolation proceeds similarly with the fractional volumes of an interpolation
cuboid.

Figure 4.4: A cross-section of the computational domain of PISM-FEVOR. Regular PISM
grid points are shown in black and the initial positions of the FEVOR particles are shown
in pink. To interpolate values of a FEVOR particle from the PISM grid, particles must lie
within the convex hull containing all the grid points (light green). Likewise, to interpolate
the values of a grid point from its natural neighbor particles (Figure 4.5), the grid point
must be withing the convex hull containing all the particles (light blue). For points lying
outside of the convex hull, some extrapolation decision must be made.
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Figure 4.5: Visualization of natural neighbor interpolation of a grid point (black) from a
scattered collection of particles (pink). The convex hull (Figure 4.4) containing the particles
is divided into Voronoi cells (black lines). By inserting the grid point into the Voronoi
tessellation, a new Voronoi cell given to the grid point (light blue) that steals area from the
natural neighbors’ cell. The stolen area, as a fraction of the new cell area, of a particles
cell is then the weight (ci) for a value at particle i. Natural neighbor interpolation proceeds
similarly in three dimensions using the stolen volumes of three-dimensional Voronoi cells.

(Figure 4.5). Natural neighbor computations are preformed using the open-source Computational

Geometry Algorithms library (CGAL, 2013; Flötotto, 2013). To interpolate values at a grid point

from its natural neighbors, that grid point must be within the convex hull of the particles (H p;

Figure 4.4), while some decisions will need to be made about the values at the boundary grid

points which are outside H p. Typically, surface grid points can simply be given E? = 1, but the basal

and side grid points decision will be problem dependent. Further, areas within the ice sheet may

become devoid of particles as they flow out of an area leading to large Voronoi cells, especially

at the surface, and poor representation of the enhancement field. Models should start with a

high enough particle density such that the enhancement field is well represented throughout the

simulation.

The enhancement factors are used by PISM to finish the (adaptive) time-step and update the

ice geometry. Because the computation of E? lags behind the PISM stress balance computation by

∆tf , we assume that E? varies slowly.

Currently, PISM-FEVOR is limited to running in serial (single processor) because the particle

motion has not been generalized to the PISM parallel grid structure. Work is currently being
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undertaken, independent of this research, by Dr. Florian Ziemen at the Alfred Wegener Institute

for Polar and Marine Research to implement Lagrangian tracer particles on the parallel PISM grid

(personal communication, June 2015), which we hope to take advantage of in the future.

It should be noted that the PISM-FEVOR interaction described here (Figure 4.2) is agnostic to

any particular ice-sheet or fabric model. That is, PISM acts as a black-box which generates the

needed dynamical fields (~vxyz, σσσxyz, and Txyz) from the provided E?
xyz field. Likewise, FEVOR acts

as a black-box which generates E?
xyz from the provided dynamical fields (~vxyz, σσσxyz, and Txyz).

4.6 Slab-on-slope example

To illustrate the PISM-FEVOR model, we simulate a 510m deep glacier of infinite length, with

parallel sides, flowing down an inclined plane in the x-direction, with a slope θ = 1◦ (Figure 4.6).

The slab is frozen to its bed and has a surface temperature of T =−30◦C.

We describe this setup in PISM as a two dimensional (2D) rectangular grid of ice, with periodic

boundary conditions on the faces perpendicular to the flow direction. The computational domain

is 100km in x̂, divided into 10km cells (X = 10 ), and 600m in ẑ, divided into 50m cells (Z = 12).

The vertical grid extends above the slab, to account for any fluctuations in the ice thickness. Each

grid point has an initial enhancement factor Exz = 1.

The FEVOR particles (Pl) are initially distributed halfway between each vertical PISM grid

point for every horizontal grid point in x̂, except the x grid point furthest down slope (Figure 4.6).

There are then XZ = 120 FEVOR particles in the domain. Because the vertical grid extends above

the ice surface, some particles will be placed above the ice. These particles will move along with

the surface of the ice, but experience no stress, and therefore do not evolve. Due to the periodic

boundary conditions, particles that are carried out of the convex hull of PISM grid points H g on

the down-slope face, re-enter H g on the up-slope face.

Each particle’s FEVOR distribution has N = 16×16×16 = 4096 cubicly-packed grains that expe-

rience mild nearest neighbor interactions, such that the local softness parameter (E c in Eqn (4.5))

for each grain is

E c =
1
2

(
1 +

1
6

6

∑
i=1

T i

T c

)
, (4.12)

(Kennedy and Pettit, 2015) where T c is the magnitude of the RSS experienced by grain c, and T i

is the magnitude of the RSS experienced by the neighboring grains (Eqn (4.9)).
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Figure 4.6: Initial PISM-FEVOR setup for the 2D slab-on-slope experiments with slope θ

and periodic boundary conditions in x. Regular PISM grid points are shown in black and
FEVOR particles are shown in pink. FEVOR particles are carried with the ice flow. Particles
that pass the down-slope green line, re-enter upstream.

The distributions are initialized with a Watson concentration parameter (w0
l ) that increases

linearly with depth in the ice as is typical of glacial ice. The particles at the surface have an initial

concentration typical of ice just below the firn-ice transition (w0
l =−2.0 for z≥ 475m; Kennedy and

Pettit, 2015), and particles at the bottom of the ice have a strong single maximum (w0
l = −15.0 for

z = 25m).

In a slab-on-slope glacier simulation, there is no ε̇23 component to the strain rate and Eqn (4.11)

reduces to E?
l = E13

l . During each FEVOR time-step, these enhancement factors are interpolated

back to the PISM grid points within the convex hull of the FEVOR particles (H p) using natural

neighbor interpolation (Figure 4.5) and grid points outside H p are set from the boundary condi-

tions. For the topmost surface of the grid, the enhancement factor is set to E?
xZ = 1, and grid points

on the bed are given the maximum enhancement factor from within H p (E?
x0 = max(E?

xz) for x 6= 0,X

and z 6= 0Z). For the grid points on the up-stream and down-stream faces, the enhancement factors

are set to those directly interior to them in H p (E?
0z = E?

1z and E?
Xz = E?

X−1,z).

Figure 4.7 shows a contour plot of the initial eigenvalues in the PISM grid which were calcu-

lated from FEVOR particles shown in pink. The initial enhancement factors increase from E? = 1.63

at the surface to E? = 4.32 at the base of slab.

In this and the subsequent experiments, we further simplified the PISM-FEVOR interaction.

The stress (σσσl) at each particle position, in this setup, is derived from the well known analytical

solution to a parallel-sided slab-on-slope glacier. While the stress could be trilinearly interpolated

from the PISM grid, using the analytical solution allows us to avoid any possible error feedback

from small variations that arise in the enhancement field as the slab evolves. Because of the low
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density of FEVOR particles, the fluctuations appear as grid-scale features (Figure 4.8; described

below) and may cause fluctuations in the stress field calculated by PISM. These fluctuations in

stress will then feed back into the fabric evolution and the calculated enhancement factors. Due to

the large computational cost of the FEVOR particles (Figure 4.9; described below), it is currently

impractical to increase the particle density. Possible development paths to reduce the excessive

costs associated with FEVOR are discussed later.

4.6.1 Evolution

The slab initially starts flowing with a surface velocity of 2.04ma−1, which is the equivalent speed

calculated from the analytical solution to this setup using an constant enhancement factor of E =

3.8 (Eqn (4.2)). Figure 4.8 shows the fabrics, particle positions, and enhancement factors calculated

after 10ka of evolution. The fabrics at the bottom of the slab have been weakened (w0
l =−6.5; a(2)

1 =

0.819), and the speed has been reduced to 1.32ma−1 (constant E = 2.5). The surface particles have

been carried 12.655km down the slab. Note that the total travel distance appears too small because

the average surface velocity is lower than the initial and final surface velocities. The deepest

fabrics quickly (≈ 1ka) reduce to the steady-state profile do to the high stresses experienced at

these depths, while the fabric near the surface take longer to achieve the steady-state profile (lower

stress). Overall, this works to quickly reduce the surface velocity, which then slowly increases to

its final value.

The PISM-FEVOR experiment described above, run in serial (single processor), took 7207.769s

on a desktop using an Intel R© Xeon 3.0GHz processor with 16GB of RAM available. Simulations

without the FEVOR particles took 4.818s on the same desktop. Figure 4.9 shows the simulation

times for the slab-on-slope experiment when varying the number of grains in each FEVOR particle.

The simulation time increases linearly with the number of particles in each distribution.

4.7 Slab-on-slope experiments

We test the fabric-flow enhancement by running three other simulations, only differing in their

initial fabric profile (Figure 4.10a). The first simulation uses an isotropic initial fabric profile (w0
l =

0, a(2)
1 = 0.33, for all particles). The second simulation uses a step-change fabric profile where the

top half of the particles are initialized with w0
l = −2.0 (a(2)

1 = 0.53) and the rest of the particles are

initialized with w0
l = −15.0 (a(2)

1 = 0.93) – large step changes in the fabric profile can be seen in

the Siple Dome, West Antarctica ice core (Di Prinzio and others, 2005). Small variations in fabric

profiles are also commonly observed (e.g., Gusmeroli and others, 2012; Kennedy and others, 2013)
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and are of interest due to their possible connection to paleoclimate (Kennedy and others, 2013;

Kennedy and Pettit, 2015). The third simulation uses the same linear fabric profile as before,

except the particles at z = 75, 125 and 225m have an a(2)
1 that has been increased by 0.05. The initial

eigenvalues and calculated enhancement factors for these three profiles are shown in Figure 4.10c-

e, respectively.

4.7.1 Evolution

Figure 4.10b shows the evolution of our fabric profiles after 10ka. The linear fabric and linear

fabric with variations have reached the same steady fabric profile. The initially isotropic fabric

has not yet reached a steady profile, at any depth. The initial step-change profile is between the

two previous final profiles; it has not reached a steady profile above 300m from the bedrock, but

has below that.

For the initially isotropic profile, the slab starts flowing with a surface velocity of 0.53ma−1

(constant E = 1; Eqn (4.2)). Figure 4.10c shows the fabrics, particle positions, and enhancement

factors calculated after 10ka of evolution. The fabrics at the bottom of the slab have been strength-

ened (w0
l =−6.0; a(2)

1 = 0.807), and the speed has been increased to 1.21ma−1 (constant E = 2.3). The

surface particles were carried 10.591km down the slab.

For the initially linear profile, the slab starts flowing with a surface velocity of 2.05ma−1 (con-

stant E = 3.9). Figure 4.10d shows the fabrics, particle positions, and enhancement factors calcu-

lated after 10ka of evolution. The fabrics at the bottom of the slab have been weakened (w0
l =−6.4;

a(2)
1 = 0.821), and the speed has been reduced to 1.33ma−1 (constant E = 2.5). The surface particles

were carried 12.765m down the slab.

For the initially linear with variations profile, the slab starts flowing with a surface velocity of

2.06ma−1 (constant E = 3.9), about 1% faster than the initially linear profile. Figure 4.10e shows

the fabrics, particle positions, and enhancement factors calculated after 10ka of evolution. The

fabrics at the bottom of the slab have been weakened (w0
l = −6.4; a(2)

1 = 0.820), and the speed has

been reduced to 1.32ma−1 (constant E = 2.5). The surface particles were carried 12.667m down

the slab, about 12m farther than the initially linear profile.

These results have been summarized in Table 4.2.

4.8 Further discussion

To evaluate PISM-FEVOR’s ability to capture the enhanced deformation due to the fabric, we

compare our results to those obtained by Ma and others (2010) with the GOLF model using a
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Table 4.2: Results summary for the different initial fabric profiles. u0
x is the initial down

slope surface velocity, and uf
x is the final down slope surface velocity. E0 is the initial

equivalent constant enhancement factor, and Ef is the final equivalent constant enhance-
ment factor. ∆Px is the distance the surface particles traveled during the simulation. Note
that the total travel distance appears too small because the average surface velocity is lower
than the initial and final surface velocities. The deepest fabrics quickly (≈ 1ka) reduce to
the steady-state profile do to the high stresses experienced at these depths, while the fabric
near the surface take longer to achieve the steady-state profile due to the lower stresses.
Overall, this works to quickly reduce the surface velocity, which then slowly increases to
its final value.

Initial Profile u0
x (ma−1) Constant E0 uf

x (ma−1) Constant Ef ∆Px (km)
Linear 2.04 3.8 1.32 2.5 12.913
Linear variation 2.06 3.9 1.32 2.5 12.926
Step change 2.05 3.9 1.33 2.5 13.026
Isotropic 0.53 1.0 1.21 2.3 10.807

full-Stokes stress balance. They simulated a two-dimensional ice sheet with the same geometry as

found in step 12 of the MISMIP 3a experiment (Marine Ice Sheet Model Intercomparison Project;

Durand and others, 2009). For the grounded section of the ice sheet, using an reduced-depth

temperature profile modeled on the temperature profile observed at the Greenland Icecore Project

(GRIP) site (Gagliardini and Meyssonnier, 2002), and a constant fabric profile which increases as

a function of reduced depth (Fig. 2; Ma and others, 2010), they found an equivalent constant

enhancement factor of E = 5.6. These conditions are similar to the initial setup of our slab for

the linear fabric profile, except, Ma’s temperature profile is nine degrees warmer at the base, and

the fabric profile is non-linear with stronger fabric for most the depth of the ice sheet. Because we

only have 10 particle levels within the ice, it is not possible to reproduce Ma’s fabric profile exactly,

but simulations with Ma-like fabric profiles and an increased basal heat flux to match Ma’s basal

temperature results in E0 that range from 5.2 to 5.5 (not shown). The resulting E0 value is very

sensitive to the imposed fabric profile.

We find our model is able to accurately represent the enhancement field, and its effect on flow,

even in our simplified model. Furthermore, the distances the particles travel down slope differ

in all the simulations, even for the simulations with the linear and linear-with-variations profiles,

which only differ slightly. This shows that the entire integrated fabric-flow history is required to

accurately model the flow, and therefore any properties that are carried with the ice. This provides

an additional, independent validation of the need for integrated fabric flow models.
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4.8.1 Further development

The computational cost of PISM-FEVOR is currently quite high (Figure 4.9). In order for PISM-

FEVOR to be applicable to Greenlandic and Antarctic simulations, the computational cost will

have to be reduced drastically. The first developmental step should be to allow the FEVOR par-

ticles to be distributed across the parallel PISM grid. This can be implemented by hooking into

the ongoing development of Lagrangian tracer particles in PISM. The development that will have

the largest benefit, however, is parallelizing FEVOR, as the bulk of the computational time is in

running the FEVOR models.

It is likely that any fully parallel implementation of PISM-FEVOR will be targeted to run on a

high-performance computer (HPC), or super-computer, due to the sheer number of FEVOR par-

ticles that would be needed to model any complex geometry. These HPC systems are typically

comprised of a number of compute nodes, each containing one or more central processing units

(CPUs) with a number of large feature-rich processing cores, dedicated random access memory

(RAM), and sometimes one or more graphical processing units (GPUs) containing many hun-

dreds of small feature-sparse processing cores (e.g., Joubert and others, 2015). A fully parallel

PISM-FEVOR scheme maybe be a CPU only scheme, as PISM is currently, or a hybrid CPU-GPU

scheme.

We propose that PISM-FEVOR may be particularly suited to a hybrid CPU-GPU scheme.

FEVOR performs many thousands of individual crystal computations that are averaged together

to determine the bulk polycrystalline response. These crystal computations are not data-intensive

and can likely be ported to the small processing cores found on a GPU to be preformed simul-

taneously. The CPUs can then handle the more complex and data intensive operations, such as,

PISM evolution, movement of the FEVOR particles and interpolation of data between the PISM

grid and the FEVOR particles. A detailed evaluation of the possible speedups, for both a paral-

lel implementation of FEVOR on CPUs and on GPUs, should be undertaken to determine which

scheme is best suited to PISM-FEVOR (Lee and others, 2010).

It is important to note, however, that PISM’s use of the shallow ice approximation (SIA) will

prevent PISM-FEVOR from accurately modeling fabrics at locations that are not dominated by

shear stress, such as an ice divide. Strong fabric develops at depth in these location (e.g., Gus-

meroli and others, 2012) due to the membrane stresses which are not represented in the SIA. Mod-

eling fabrics in these locations will necessarily entail using a higher-order approximation to the

Navier-Stokes equation in order to resolve the membrane stresses at these locations. Fortunately, a
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higher-order approximation is planned for inclusion in PISM, but no timeline for inclusion is cur-

rently given (PISM, 2015). Even then, the lack of membrane stresses are not the only issue for the

SIA in a divide region (e.g., Gillet-Chaulet and Hindmarsh, 2011) and it may be necessary to use

the full-Stokes stress balance equation, which, unfortunately is not planned for inclusion in PISM

at this time. Nevertheless, the lessons learned here, and throughout the further development of

PISM-FEVOR, can be applied equally well to any similar undertaking if needed.

4.9 Conclusions

Using a slab-on-slope glacier setup, we have shown that PISM-FEVOR captures the flow enhance-

ment due to fabric, and provides a further validation for using integrated fabric-flow model over

using constant enhancement factors in ice sheet models. PISM-FEVOR successfully incorporates a

mean-field polycrystalline model into a ice-sheet scale ice flow model. Because of this integration,

PISM-FEVOR is capable of investigating non-steady material parameters, and its effect on flow,

which is a capability currently lacking in other polycrystal to ice-sheet scale models. Although

this comes at a high computational cost, there are clear developmental steps that can be taken to

reduce the computational requirements of PISM-FEVOR. Implementing Lagrangian tracer parti-

cles on the PISM grid, and extending FEVOR to parallel processing on a GPU should be the two

primary developmental goals.
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Figure 4.7: Initial eigenvalues and calculated enhancement factors for a slab-on-slope with
a linearly increasing fabric profile. The 510m thick slab will flow to the right, has a slope of
θ = 1◦ (Figure 4.6), a surface temperature of T =−30◦C, a basal heat flux of 42mWm−2, and
120 FEVOR particles within (positions shown in pink). Schmidt plots for the surface and
bed fabrics are shown on the left. The fabrics are contoured at levels of 0,2Σ, ...,10Σ where
Σ is the standard deviation of the density of grains from the expected density for isotropic
ice (Kamb, 1959). The surface particles’ fabric is initialized with a Watson concentration
parameter of w0 = −2.0 (a(2)

1 = 0.53; Eqn (4.10)) and the concentration parameter increases
linearly with depth, to a maximum value of w0 =−15.0 ( a(2)

1 = 0.93).

111



0

2

4

6

8

10

50403020100-50 -40 -30 -20-10

x (km)

500

400

300

200

100

0

z
 (

m
)

1

2

4

5

3

E
n

h
a

n
c
e

m
e

n
t 

fa
c
to

r 
(E

*)

w = -2.0

w = -6.5

600

Figure 4.8: The evolution of FEVOR particles for a slab with a linearly increasing initial
fabric. The slab has evolved for 10ka with 50a time-steps. See Figure 4.7 caption for figure
details. The variation in the contour lines is a result of the small differences in the randomly
generated fabrics from particle to particle, and the large horizontal spacing of the particles,
which cause the fluctuations to appear grid-scale features.
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Figure 4.10: The evolution of FEVOR particles in a slab with a variety of initial fabric
profiles. a. The initial linear, isotropic, and step-change profiles are shown by the blue,
orange, and gold curves respectively. The purple curve shows a linear fabric where the
fabrics at z = 75, 125, and 225m have been strengthened by 0.05. b. The fabric profiles
after 10ka of evolution. c-e. The initial enhancement fields and particle positions and
the evolved enhancement fields and particle positions for the isotropic, step-change, and
linear with variations fabric profiles, respectively. See Figure 4.7 and Figure 4.8 caption for
details c-e.
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Chapter 5

Conclusions

The ultimate goal of the project which this research contributes to, is to develop ice crystalline

fabric as a climate proxy. Recall from Chapter 1, that:

In order for climate history to be inverted from fabric data, a forward model of the

ice fabric evolution is needed. The forward model must include the ice-climate interac-

tion in the firn, and the subsequent metamorphism of the firn as it turns to ice, as well

as the further evolution of ice within the ice sheet. Because this is a many-scale prob-

lem, encompassing processes from the mesoscopic to the macroscopic and beyond, a

complete forward model will necessarily entail a number of interacting models. These

models will need to compute: the climate, the firn microstructure evolution, the firn

densification, the ice microstructure evolution, and the ice flow. These models can be

split into two regimes, the firn regime and the ice regime.

Throughout the work presented in this dissertation, we have laid the foundation necessary for

the development of ice crystalline fabric as a climate proxy by putting the ice regime on a solid

theoretical foundation. That is, we have:

1. shown that a variation in fabric just below the firn ice transition may be preserved;

2. determined how long, and under what conditions, the variation is preserved in ice-sheet like

conditions;

3. successfully created an initial flow-fabric integrated model which, once fully developed, can

be used to investigate in situ fabric evolution.

In Chapter 2 we have modeled the evolution of a subtle fabric variation in conditions typical

of a polar ice-divide. Throughout the depth of a polar ice-divide, fabric evolution is driven by

uniaxial (an ice dome) or pure shear (an ice ridge) stresses. The evolution of fabric is further

influenced by polygonization (sometimes termed rotation recrystallization) at intermediate depth

within a polar ice divide. We find that in these conditions, a fabric variation is able to persist for

≈ 200ka. Using data from Taylor Dome, East Antarctica, to create a simple model for an ice divide,

we found that the fabric variation was able to persist throughout the entire depth of the simulated

ice divide.
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Chapter 3 extends our work to include conditions found throughout a polar ice-sheet where

shear stresses and higher temperatures may be experienced, and migration recrystallization may

influence the fabric evolution. We find that under all modeled conditions there is a so called

‘window of opportunity,’ where a subtle fabric variation can be preserved. Shear stresses extend

how long the fabric variation persists and may act to enhance the fabric variation (under certain

conditions) by rotating grains into softer orientations and reducing the number of polygoniza-

tion events. Higher temperature reduces the overall time in which the fabric variation can be

preserved but does not influence the evolution profile, except, when comparing runs across the

thermal activation energy threshold at ≈−10◦C. Migration recrystallization did not eliminate the

fabric variation for any of the modeled stress or temperature conditions, contrary to conventional

understanding. Higher levels of nearest neighbor interactions, however, reduce the strength of

the fabric variation at any given bulk strain when compared to lower interaction levels. Even

with full nearest-neighbor interactions the fabric variation was able to persist to at least 0.35 of

the modeled bulk strain – the modeled bulk strain achieved at the base of the simulated Taylor

Dome-like ice-divide in Chapter 2.

Chapter 4 discusses the integration of our Fabric Evolution with Recrystallization (FEVOR)

model, developed in the previous two chapters, with the Parallel Ice Sheet Model (PISM). Because

FEVOR does not compute ice flow, combining it with a flow model such as PISM is necessary to

apply it to a particular location. PISM-FEVOR represents the first step into fully incorporating

a polycrystal scale model that includes recrystallizations into an ice-sheet scale flow model. Un-

like other polycrystal to ice-sheet flow models, which do not directly include a polycrystal model,

PISM-FEVOR is capable of investigating non-steady material properties, and its effect on flow.

The PISM-FEVOR model was able to reproduce the equivalent constant enhancement factors ob-

tained by Ma and others (2010) with the GOLF model using a full-Stokes stress balance. PISM-

FEVOR further provided an independent validation for using an integrated fabric-flow ice sheet

model. This capability, however, does come at a high computational cost. Chapter 4 outlines some

future development goals that may reduce the computational burden of the PISM-FEVOR model.

5.1 Looking forward

There is still much more work that needs to be done in order to fully develop fabric as a climate

proxy. In the ice regime, experiments similar to the ones presented here should be conducted with

a variety of polycrystalline models to corroborate our results. The development of PISM-FEVOR

should continue; the full parallel capability of PISM needs to be exploited and FEVOR needs
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to be parallelized to run on either central processing units (CPUs) or graphical processing units

(GPUs). A fully developed PISM-FEVOR (using a higher-order stress balance), when applied to

well studied ice-core locations, could be used to determine what types of initial fabric variations,

if any, are able to reproduce the fabric variations observed deep within an ice core. For example,

it may be possible to determine if initial fabric variations can describe the large jump in fabric (or

any part thereof) observed in Siple Dome, West Antarctica (Di Prinzio and others, 2005).

The firn regime, unfortunately, has seen only limited investigation of the fabric development,

and how it may relate to climate (Carns and others, 2010; Adams and Miller, 2003; Montagnat and

others, 2014). A climate-firn model needs to be developed, and many more observations of firn

evolution, both in situ and in the laboratory, need to be undertaken (Kipfstuhl and others, 2009;

Faria and others, 2014a,b). Because the firn regime is where the ice is interacting with the climate,

this region should be the focus of any ongoing effort to develop fabric as a climate proxy.

5.2 Final words

Although the work left to develop the fabric proxy may seem a daunting undertaking, we have

outlined a possible path forward. We hope our work provides you mostly with the sense of excite-

ment; the kind of excitement found in the possibility of creating something new – a climate proxy

from the fabric itself.

It seems fitting to conclude by showing Figure 1.3 again — it is the apparent (qualitative)

correlation between the fabric and the known climate proxy δ18O profiles which sent us down this

path. Let it continue to inspire a drive to prove, or disprove if that case may be, a causation for

such an intriguing correlation.
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Figure 5.1: Comparison of δ18O and fabric in the GISP2 ice core (reprint of Figure 1.3).
Changes in the fabric (blue curve; Gow and others, 1997) appears to correlate with the
known climate proxy δ18O (green curve; Grootes and others, 1993).
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