%0 Journal Article %J Frontiers in Marine Science %D 2019 %T Circumpolar Deep Water Impacts Glacial Meltwater Export and Coastal Biogeochemical Cycling Along the West Antarctic Peninsula %A Cape, Mattias R. %A Vernet, Maria %A Pettit, Erin C. %A Wellner, Julia %A Truffer, Martin %A Akie, Garrett %A Domack, Eugene %A Leventer, Amy %A Smith, Craig R. %A Huber, Bruce A. %K Antarctic Peninsula %K ice %K meltwater %K phytoplankton %B Frontiers in Marine Science %V 6 %P 1–23 %G eng %U https://www.frontiersin.org/article/10.3389/fmars.2019.00144/full %R 10.3389/fmars.2019.00144 %0 Journal Article %J GSA Today %D 2019 %T The Larsen Ice Shelf System, Antarctica (LARISSA): Polar Systems Bound Together, Changing Fast %A Wellner, Julia %A Scambos, Ted %A Domack, Eugene %A Vernet, Maria %A Leventer, Amy %A Balco, Greg %A Brachfeld, Stefanie %A Cape, Mattias %A Huber, Bruce %A Ishman, Scott %A McCormick, Michael %A Mosley-Thompson, Ellen %A Pettit, Erin %A Smith, Craig %A Truffer, Martin %A Van Dover, Cindy %A Yoo, Kyu-Cheul %X Climatic, cryospheric, and biologic changes taking place in the northern Antarctic Peninsula provide examples for how ongoing systemic change may pro‐ gress through the entire Antarctic system. A large, interdisciplinary research project focused on the Larsen Ice Shelf system, synthesized here, has documented dramatic ice cover, oceanographic, and ecosystem changes in the Antarctic Peninsula during the Holocene and the present period of rapid regional warming. The responsive- ness of the region results from its position in the climate and ocean system, in which a narrow continental block extends across zonal atmospheric and ocean flow, creating high snow accumulation, strong gradients and gyres, dynamic oceanography, outlet glaciers feeding into many fjords and bays having steep topography, and a continental shelf that contains many glacially carved troughs separated by areas of glacial sedi- ment accumulation. The microcosm of the northern Antarctic Peninsula has a ten- dency to change rapidly—rapid relative not just to Antarctica's mainland but compared to the rest of the planet as well—and it is generally warmer than the rest of Antarctica. Both its Holocene and modern glaciological retreats offer a picture of how larger areas of Antarctica farther south might change under future warming. %B GSA Today %V 29 %P 4–10 %G eng %R 10.1130/gsatg382a.1 %0 Journal Article %J J. Glaciol. %D 2019 %T Tracking icebergs with time-lapse photography and sparse optical flow , LeConte Bay , Alaska , 2016 – 2017 %A Kienholz, Christian %A Amundson, Jason M %A Motyka, Roman J %A Jackson, Rebecca H %A Mickett, John B %A Sutherland, David A %A Nash, Jonathan D %A Winters, Dylan S %A Dryer, William P %A Truffer, Martin %K glaciological instruments and methods %K ice %K icebergs %K ocean interactions %K Remote sensing %B J. Glaciol. %V 65 %P 195–211 %G eng %R 10.1017/jog.2018.105 %0 Journal Article %J Science Advances %D 2018 %T A large impact crater beneath Hiawatha Glacier in northwest Greenland %A Kjær, Kurt H. %A Larsen, Nicolaj K %A Binder, Tobias %A Bjørk, Anders A %A Eisen, Olaf %A Fahnestock, Mark A %A Funder, Svend %A Garde, Adam A %A Haack, Henning %A Helm, Veit %A Houmark-Nielsen, Michael %A Kjeldsen, Kristian K %A Khan, Shfaqat A %A Machguth, Horst %A McDonald, Iain %A Morlighem, Mathieu %A Mouginot, Jérémie %A Paden, John D %A Waight, Tod E %A Weikusat, Christian %A Willerslev, Eske %A MacGregor, Joseph A. %X We report the discovery of a large impact crater beneath Hiawatha Glacier in northwest Greenland. From airborne radar surveys, we identify a 31-kilometer-wide, circular bedrock depression beneath up to a kilometer of ice. This depression has an elevated rim that cross-cuts tributary subglacial channels and a subdued central uplift that appears to be actively eroding. From ground investigations of the deglaciated foreland, we identify overprinted structures within Precambrian bedrock along the ice margin that strike tangent to the subglacial rim. Glaciofluvial sediment from the largest river draining the crater contains shocked quartz and other impact-related grains. Geochemical analysis of this sediment indicates that the impactor was a fractionated iron asteroid, which must have been more than a kilometer wide to produce the identified crater. Radiostratigraphy of the ice in the crater shows that the Holocene ice is continuous and conformable, but all deeper and older ice appears to be debris rich or heavily disturbed. The age of this impact crater is presently unknown, but from our geological and geophysical evidence, we conclude that it is unlikely to predate the Pleistocene inception of the Greenland Ice Sheet. %B Science Advances %V 4 %P eaar8173 %8 nov %G eng %U http://advances.sciencemag.org/ http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aar8173 %R 10.1126/sciadv.aar8173 %0 Journal Article %J Remote Sensing %D 2017 %T Glacier Changes in the Susitna Basin, Alaska, USA,(1951–2015) using GIS and Remote Sensing Methods %A Wastlhuber, Roland %A Hock, Regine %A Kienholz, Christian %A Braun, Matthias %B Remote Sensing %V 9 %P 478 %G eng %0 Journal Article %J Science Advances %D 2016 %T Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet %A Khan, Shfaqat A %A Sasgen, Ingo %A Bevis, Michael %A van Dam, T. %A Bamber, Jonathan L %A Wahr, John %A Willis, Michael %A Kjaer, K. H. %A Wouters, Bert %A Helm, Veit %A Csatho, Beata %A Fleming, Kevin %A Bjork, A. A. %A Aschwanden, Andy %A Knudsen, Per %A Munneke, Peter Kuipers %B Science Advances %V 2 %P e1600931–e1600931 %8 sep %G eng %U http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1600931 %R 10.1126/sciadv.1600931 %0 Journal Article %J The Cryosphere %D 2016 %T Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ %A Muresan, Ioana S. %A Khan, Shfaqat A. %A Aschwanden, Andy %A Khroulev, Constantine %A Van Dam, Tonie %A Bamber, Jonathan %A van den Broeke, Michiel R. %A Wouters, Bert %A Kuipers Munneke, Peter %A Kjær, Kurt H. %B The Cryosphere %V 10 %P 597–611 %8 mar %G eng %U http://www.the-cryosphere.net/10/597/2016/ %R 10.5194/tc-10-597-2016 %0 Journal Article %J Geophysical Research Letters %D 2016 %T Sensitivity of Pine Island Glacier to observed ocean forcing %A Christianson, Knut %A Bushuk, Mitchell %A Dutrieux, Pierre %A Parizek, Byron R. %A Joughin, Ian R. %A Alley, Richard B. %A Shean, David E. %A Abrahamsen, E. Povl %A Anandakrishnan, Sridhar %A Heywood, Karen J. %A Kim, Tae-Wan %A Lee, Sang Hoon %A Nicholls, Keith %A Stanton, Tim %A Truffer, Martin %A Webber, Benjamin G. M. %A Jenkins, Adrian %A Jacobs, Stan %A Bindschadler, Robert %A Holland, David M. %K glacier-ocean interactions %K Ice Dynamics %K ice shelves %K ice streams %K marine ice sheet instability %X ©2016. American Geophysical Union. All Rights Reserved.We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice sheet instability. Following a subsequent 60{%} drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by {\textless} 4{%}, with flow recovering as the ocean warmed to prior temperatures. During this cold-ocean period, the evolving glacier-bed/ice shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin-wide thinning signal did not change. Thus, as predicted by theory, once marine ice sheet instability is underway, a single transient high-amplitude ocean cooling has only a relatively minor effect on ice flow. The long-term effects of ocean temperature variability on ice flow, however, are not yet known. %B Geophysical Research Letters %V 43 %P 10,817–10,825 %8 oct %G eng %U http://doi.wiley.com/10.1002/2016GL070500 %R 10.1002/2016GL070500 %0 Journal Article %J Journal of Geophysical Research: Earth Surface %D 2015 %T End-of-winter snow depth variability on glaciers in Alaska %A McGrath, Daniel %A Sass, Louis %A O'Neel, Shad %A Arendt, Anthony %A Wolken, Gabriel %A Gusmeroli, Alessio %A Kienholz, Christian %A McNeil, Christopher %B Journal of Geophysical Research: Earth Surface %V 120 %P 1530–1550 %G eng %0 Journal Article %J Reports on Progress in Physics %D 2015 %T Greenland ice sheet mass balance %A Khan, Shfaqat A. %A Aschwanden, Andy %A Bjørk, Anders A %A Whar, John %A Kjeldsen, Kristian K. %A Kjær, Kurt H. %X Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined. %B Reports on Progress in Physics %I IOP Publishing %V 78 %P 26 %G eng %U http://dx.doi.org/10.1088/0034-4885/78/4/046801 %R 10.1088/0034-4885/78/4/046801 %0 Journal Article %J Journal of Geophysical Research: Earth Surface %D 2015 %T Radiostratigraphy and age structure of the Greenland Ice Sheet %A MacGregor, Joseph A. %A Fahnestock, Mark A. %A Catania, Ginny A. %A Paden, John D %A Prasad Gogineni, S. %A Young, S Keith %A Rybarski, Susan C %A Mabrey, Alexandria N %A Wagman, Benjamin M %A Morlighem, Mathieu %K 10.1002/2014JF003215 and Greenland Ice Sheet %K ice core %K ice-penetrating dynamics %K ice-sheet dynamics %B Journal of Geophysical Research: Earth Surface %V 120 %P 212–241 %G eng %U http://doi.wiley.com/10.1002/2014JF003215 %R 10.1002/2014JF003215 %0 Journal Article %J Geophysical Research Letters %D 2015 %T Subglacial discharge at tidewater glaciers revealed by seismic tremor %A Bartholomaus, Timothy C %A Amundson, Jason M %A Walter, Jacob I %A O'Neel, Shad %A West, Michael E %A Chris F. Larsen %B Geophysical Research Letters %G eng %0 Journal Article %J Journal of Geophysical Research: Earth Surface %D 2015 %T Tidal and seasonal variations in calving flux observed with passive seismology %A Bartholomaus, Timothy C %A Larsen, Christopher F %A West, Michael E %A O'Neel, Shad %A Pettit, Erin C %A Truffer, Martin %B Journal of Geophysical Research: Earth Surface %G eng %0 Journal Article %J Bulletin of the Seismological Society of America %D 2015 %T Triggered Seismic Events along the Eastern Denali Fault in Northwest Canada Following the 2012 Mw 7.8 Haida Gwaii, 2013 Mw 7.5 Craig, and Two Mw>8.5 Teleseismic Earthquakes %A Chastity Aiken %A Jessica Zimmerman Mejia %Y Zhigang Peng %? Jacob I. Walter %X We conduct a systematic search for remotely triggered seismic activity along the eastern Denali fault (EDF) in northwest Canada, an intraplate strike‐slip region. We examine 19 distant earthquakes recorded by nine broadband stations in the Canadian National Seismograph Network and find that the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig, Alaska, earthquakes triggered long duration (>10  s), emergent tremor‐like signals near the southeastern portion of the EDF. In both cases, tremor coincides with the peak transverse velocities, consistent with Love‐wave triggering on right‐lateral strike‐slip faults. The 2011 Mw 9.0 Tohoku‐Oki and 2012 Mw 8.6 Indian Ocean earthquakes possibly triggered tremor signals, although we were unable to locate those sources. In addition, we also identify many short‐duration (<5  s) bursts that were repeatedly triggered by the Rayleigh waves of the 2012 Mw 7.8 Haida Gwaii earthquake. Although we were unable to precisely locate the short‐duration (<5  s) events, they appear to be radiating from the direction of the Klutlan Glacier and from a belt of shallow historical seismicity at the eastern flank of the Wrangell–St. Elias mountain range. The fact that these events were triggered solely by the Rayleigh waves suggests a different source mechanism as compared with triggered tremor observed along the EDF and other plate boundary regions. %B Bulletin of the Seismological Society of America %V 105 %8 05/2015 %G eng %U http://www.bssaonline.org/content/early/2015/04/08/0120140156.abstract %N 2B %& 1165 %R 10.1785/0120140156 %0 Journal Article %J Science %D 2014 %T Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica %A Rebesco, M %A Domack, E %A Zgur, F %A Lavoie, C %A Leventer, A %A Brachfeld, S %A Willmott, V %A Halverson, G %A Truffer, M %A Scambos, T %A Pettit, Erin C %B Science %I American Association for the Advancement of Science %V 345 %P 1354–1358 %G eng %0 Journal Article %J The Cryosphere %D 2014 %T Glacier area and length changes in Norway from repeat inventories %A Winsvold, S. H. %A Andreassen, L. M. %A Kienholz, C. %B The Cryosphere %V 8 %P 1885–1903 %G eng %0 Journal Article %J Annals of Glaciology %D 2014 %T Helicopter borne radar imaging of snow cover on and around glaciers in Alaska %A Gusmeroli, A. %A Wolken, G. %A Arendt, A. %B Annals of Glaciology %V 55 %P 78-88 %G eng %R 10.3189/2014AoG67A029 %0 Journal Article %J Journal of Glaciology %D 2014 %T Influence of debris-rich basal ice on flow of a polar glacier %A Pettit, Erin C %A Whorton, Erin N %A Waddington, Edwin D %A Sletten, Ronald S %B Journal of Glaciology %I International Glaciological Society %V 60 %P 989–1006 %G eng %0 Journal Article %J Eos Trans. AGU %D 2014 %T Surface Drifters Track the Fate of Greenland Ice Sheet Meltwater %A Hauri, C. %A Truffer, M. %A Winsor, P. %A Lennert, K. %B Eos Trans. AGU %V 95 %P 237–239 %G eng %R 10.1002/2014EO260002 %0 Report %D 2013 %T Glaciers and ice caps (outside Greenland) %A G. J. Wolken %A Martin J. Sharp %A M-L. Geai %A D. Burges %A Anthony A. Arendt %A Bert Wouters %B State of the Climate in 2012 %I Bull. Amer. Meteor. Soc. 94(7), S143 %G eng %0 Journal Article %J J. Geophys. Res. %D 2013 %T Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica %A Nowicki, Sophie %A Robert A. Bindschadler %A Abe-Ouchi, Ayako %A Andy Aschwanden %A E. Bueler %A Choi, Hyeungu %A Fastook, Jim %A Granzow, Glen %A Greve, Ralf %A Gutowski, Gail %A Herzfeld, Ute %A Jackson, Charles %A Jesse V Johnson %A Constantine Khroulev %A Larour, Eric %A Anders Levermann %A Lipscomb, William H. %A Maria A. Martin %A Morlighem, Mathieu %A Parizek, Byron R. %A David Pollard %A Stephen F. Price %A Ren, Diandong %A Eric Rignot %A Fuyuki Saito %A Tatsuru Sato %A Seddik, Hakime %A Seroussi, Helene %A Takahashi, Kunio %A Walker, Ryan %A Wang, Wei Li %B J. Geophys. Res. %V 118 %P 1002–1024 %G eng %U http://doi.wiley.com/10.1002/jgrf.20081 %R 10.1002/jgrf.20081 %0 Journal Article %J J. Geophys. Res. %D 2013 %T Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland %A Nowicki, Sophie %A Robert A. Bindschadler %A Abe-Ouchi, Ayako %A Andy Aschwanden %A E. Bueler %A Choi, Hyeungu %A Fastook, Jim %A Granzow, Glen %A Greve, Ralf %A Gutowski, Gail %A Herzfeld, Ute %A Jackson, Charles %A Jesse V Johnson %A Constantine Khroulev %A Larour, Eric %A Anders Levermann %A Lipscomb, William H. %A Maria A. Martin %A Morlighem, Mathieu %A Parizek, Byron R. %A David Pollard %A Stephen F. Price %A Ren, Diandong %A Eric Rignot %A Fuyuki Saito %A Tatsuru Sato %A Seddik, Hakime %A Seroussi, Helene %A Takahashi, Kunio %A Walker, Ryan %A Wang, Wei Li %B J. Geophys. Res. %V 118 %P 1025–1044 %8 jun %G eng %U http://doi.wiley.com/10.1002/jgrf.20076 %R 10.1002/jgrf.20076 %0 Journal Article %J Science %D 2013 %T A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 %A Alex S. Gardner %A Geir Moholdt %A J. Graham Cogley %A Bert Wouters %A Anthony A. Arendt %A Wahr, John %A Berthier, Etienne %A Regine Hock %A W. Tad Pfeffer %A Georg Kaser %A Ligtenberg, Stefan R. M. %A Bolch, Tobias %A Martin J. Sharp %A Jon Ove Hagen %A van den Broeke, Michiel R. %A Paul, Frank %X Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world’s oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003–2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was –259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise. %B Science %V 340 %P 852-857 %G eng %U http://www.sciencemag.org/content/340/6134/852.abstract %R 10.1126/science.1234532 %0 Journal Article %J The Journal of the Acoustical Society of America %D 2013 %T Underwater sound radiated by bubbles released by melting glacier ice %A Lee, Kevin M %A Wilson, Preston S %A Pettit, Erin C %B The Journal of the Acoustical Society of America %I Acoustical Society of America %V 134 %P 4172–4172 %G eng %0 Journal Article %J The Cryosphere %D 2012 %T Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century %A Alex S. Gardner %A Geir Moholdt %A Anthony A. Arendt %A Bert Wouters %B The Cryosphere %V 6 %P 1103–1125 %G eng %R 10.5194/tc-6-1103-2012 %0 Journal Article %J Journal of Geophysical Research %D 2012 %T Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland %A Walter, F. %A Amundson, J. M. %A O'Neel, S. %A Truffer, M. %A Fahnestock, M.A. %A Fricker, H. A. %K calving %K glacier %K iceberg %K seismology %B Journal of Geophysical Research %V 117 %P 1–11 %8 mar %G eng %U http://www.agu.org/pubs/crossref/2012/2011JF002132.shtml %R 10.1029/2011JF002132 %0 Journal Article %J Journal of Geophysical Research %D 2012 %T Calving seismicity from iceberg–sea surface interactions %A Timothy C. Bartholomaus %A Chris F. Larsen %A Shad OʼNeel %A West, M. %B Journal of Geophysical Research %V 117 %P F04029 %G eng %R 10.1029/2012JF002513 %0 Report %D 2012 %T Mountain Glaciers and ice caps %A Martin J. Sharp %A M. Ananicheva %A Anthony A. Arendt %A Jon Ove Hagen %A Regine Hock %A E. Josberger %A R. D. Moore %A W. Tad Pfeffer %A G. J. Wolken %B Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. %I Arctic Monitoring and Assessment Programme (AMAP) %C Oslo, Norway %P 538 %8 11/2011 %@ 978-82-7971-071-4 %G eng %0 Journal Article %J Journal of Glaciology %D 2011 %T The crossover stress, anisotropy and the ice flow law at Siple Dome, West Antarctica %A Erin C Pettit %A Waddington, Edwin D %A Harrison, William D %A Thorsteinsson, Throstur %A Elsberg, Daniel %A Morack, John %A Zumberge, Mark A %B Journal of Glaciology %I International Glaciological Society %V 57 %P 39–52 %G eng %0 Journal Article %J Journal of Geophysical Research D: Atmospheres %D 2011 %T Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing %A Hanna, E. %A Huybrechts, P. %A Cappelen, J. %A Steffen, K. %A Bales, R.C. %A Evan W. Burgess %A McConnell, J.R. %A Steffensen, J.P. %A Van Den Broeke, M. %A Wake, L. %A Bigg, G. %A Griffiths, M. %A Savas, D. %B Journal of Geophysical Research D: Atmospheres %V 116 %G eng %U http://www.scopus.com/inward/record.url?eid=2-s2.0-84855336557&partnerID=40&md5=9239bc453a5004bd7a1258a2aaa14f07 %0 Journal Article %J The Cryosphere %D 2011 %T The Potsdam Parallel Ice Sheet Model (PISM-PIK)-Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet %A Maria A. Martin %A Winkelmann, R. %A Haseloff, M. %A Albrecht, T. %A E. Bueler %A Constantine Khroulev %A Anders Levermann %B The Cryosphere %V 5 %P 727-740 %G eng %U http://www.the-cryosphere.net/5/727/2011/tc-5-727-2011.html %R 10.5194/tc-5-727-2011 %0 Journal Article %J The Cryosphere %D 2011 %T The Potsdam Parallel Ice Sheet Model (PISM-PIK)–Part 1: Model description %A Winkelmann, R. %A Maria A. Martin %A Haseloff, M. %A Albrecht, T. %A E. Bueler %A Constantine Khroulev %A Anders Levermann %B The Cryosphere %V 5 %P 715–726 %G eng %U http://www.the-cryosphere.net/5/715/2011/tc-5-715-2011.html %R 10.5194/tc-5-715-2011 %0 Journal Article %J Geology %D 2010 %T Glacier microseismicity %A West, M. %A Chris F. Larsen %A Martin Truffer %A Shad OʼNeel %A LeBlanc, Laura %X We present a framework for interpreting small glacier seismic events based on data collected near the center of Bering Glacier, Alaska, in spring 2007. We find extremely high microseismicity rates (as many as tens of events per minute) occurring largely within a few kilometers of the receivers. A high-frequency class of seismicity is distinguished by dominant frequencies of 20–35 Hz and impulsive arrivals. A low-frequency class has dominant frequencies of 6–15 Hz, emergent onsets, and longer, more monotonic codas. A bimodal distribution of 160,000 seismic events over two months demonstrates that the classes represent two distinct populations. This is further supported by the presence of hybrid waveforms that contain elements of both event types. The high-low-hybrid paradigm is well established in volcano seismology and is demonstrated by a comparison to earthquakes from Augustine Volcano. We build on these parallels to suggest that fluid-induced resonance is likely responsible for the low-frequency glacier events and that the hybrid glacier events may be caused by the rush of water into newly opening pathways. %B Geology %V 38 %P 319-322 %G eng %U http://geology.gsapubs.org/content/38/4/319.abstract %R 10.1130/G30606.1 %0 Journal Article %J Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences %D 2010 %T Recent and future warm extreme events and high-mountain slope stability %A Huggel, C. %A Salzmann, N. %A Allen, S. %A Caplan-Auerbach, J. %A L Fischer  %A Haeberli, W. %A Chris F. Larsen %A Schneider, D. %A Wessels, R. %B Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences %V 368 %P 2435–2459 %G eng %R 10.1098/rsta.2010.0078 %0 Journal Article %J Journal of Climate %D 2009 %T Changes of glaciers and climate in northwestern North America during the late twentieth century %A Anthony A. Arendt %A Walsh, J. %A Harrison, W. %B Journal of Climate %V 22 %P 4117–4134 %G eng %0 Journal Article %J Geophysical Research Letters %D 2009 %T Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution %A Regine Hock %A de Woul, M. %A Valentina Radić %A Dyurgerov, M. %B Geophysical Research Letters %V 36 %P L07501 %G eng %0 Journal Article %J Geophysical Research Letters %D 2008 %T Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland %A Jason M Amundson %A Martin Truffer %A M P Lüthi %A Mark Fahnestock %A West, M. %A Roman J. Motyka %B Geophysical Research Letters %V 35 %P L22501 %G eng %U http://www.agu.org/pubs/crossref/2008/2008GL035281.shtml %0 Journal Article %J Annals of glaciology %D 2007 %T Climate sensitivity of Storglaciaren, Sweden: an intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data %A Regine Hock %A Valentina Radić %A de Woul, M. %B Annals of glaciology %V 46 %P 342–348 %G eng %0 Journal Article %J Journal of Glaciology %D 2007 %T Glacier-dammed lake outburst events of Gornersee, Switzerland %A Huss, M. %A Bauder, A. %A Werder, M. %A Funk, M. %A Regine Hock %B Journal of Glaciology %V 53 %P 189–200 %G eng %0 Journal Article %J Journal of Glaciology %D 2007 %T The role of crystal fabric in flow near an ice divide %A Erin C Pettit %A Thorsteinsson, Throstur %A Jacobson, H Paul %A Waddington, Edwin D %B Journal of Glaciology %I International Glaciological Society %V 53 %P 277–288 %G eng %0 Journal Article %J DRAFT, Mar %D 2005 %T Candidate drill site near the Ross-Amundsen ice divide, West Antarctica %A Conway, H %A Neumann, TA %A Stephen F. Price %A Waddington, ED %A Morse, D %A Taylor, K %A Mayewski, PA %A Dixon, D %A Erin C Pettit %A Steig, EJ %B DRAFT, Mar %G eng %0 Journal Article %J White Paper for the US Ice Core Working Group %D 2005 %T Proposed drill site near the Ross–Amundsen ice divide, West Antarctica %A Conway, H %A Neumann, TA %A Stephen F. Price %A Waddington, ED %A Morse, D %A Taylor, K %A Mayewski, PA %A Dixon, D %A Erin C Pettit %A Steig, EJ %B White Paper for the US Ice Core Working Group %G eng %0 Journal Article %J Journal of Glaciology %D 2004 %T Depth-and time-dependent vertical strain rates at Siple Dome, Antarctica %A Elsberg, Daniel H %A Harrison, William D %A Zumberge, Mark A %A Morack, John L %A Erin C Pettit %A Waddington, Edward D %A Husmann, Eric %B Journal of Glaciology %I International Glaciological Society %V 50 %P 511–521 %G eng %0 Journal Article %J Annals of Glaciology %D 2003 %T Effects of basal sliding on isochrones and flow near an ice divide %A Erin C Pettit %A Jacobson, H Paul %A Waddington, Edwin D %B Annals of Glaciology %I International Glaciological Society %V 37 %P 370–376 %G eng %0 Journal Article %J Journal of Glaciology %D 2003 %T Ice flow at low deviatoric stress %A Erin C Pettit %A Waddington, Edwin D %B Journal of Glaciology %I International Glaciological Society %V 49 %P 359–369 %G eng %0 Journal Article %J Journal of Glaciology %D 2002 %T Measurement of vertical strain and velocity at Siple Dome, Antarctica, with optical sensors %A Zumberge, Mark A %A Elsberg, Daniel H %A Harrison, William D %A Husmann, Eric %A Morack, John L %A Erin C Pettit %A Waddington, Edwin D %B Journal of Glaciology %I International Glaciological Society %V 48 %P 217–225 %G eng %0 Journal Article %D 0 %T Glaciers and Climate of the Upper Susitna Basin, Alaska %A Bliss, Andrew %A Hock, Regine %A Wolken, Gabriel %A Whorton, Erin %A Aubry-Wake, Caroline %A Braun, Juliana %A Gusmeroli, Alessio %A Harrison, Will %A Hoffman, Andrew %A Liljedahl, Anna %A others %G eng %0 Journal Article %J Landslides %D 0 %T Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska %A Wieczorek, Gerald %A Geist, Eric %A Roman J. Motyka %A Jakob, Matthias %X An unstable rock slump, estimated at 5 to 10 × 106 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3–4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green’s law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours. %B Landslides %V 4 %P 205-215 %G eng %U http://www.ingentaconnect.com/content/klu/10346/2007/00000004/00000003/00000084 %R doi:10.1007/s10346-007-0084-1